ФИЗИЧЕСКИЕ СВОЙСТВА И МЕТОДЫ ИССЛЕДОВАНИЙ

УДК 548.732:621.316.592

ИССЛЕДОВАНИЕ ДЕФЕКТОВ В МНОГОСЛОЙНЫХ ЭПИТАКСИАЛЬНЫХ СИЛОВЫХ ПРИБОРАХ НА ОСНОВЕ КРЕМНИЯ МЕТОДАМИ РЕНТГЕНОВСКОЙ ТОПОГРАФИИ

© 2012 г. И. Л. Шульпина¹, В. А. Козлов^{2,3}
¹Физико-технический институт РАН им. А. Ф. Иоффе,
²НПО «ФИД-Техника»,
³ООО «Силовые полупроводники»

Методами рентгеновской дифракционной топографии исследованы дефекты в многослойных эпитаксиальных структурах на основе кремния, предназначенных для использования в качестве исходного материала для изготовления силовых эпитаксиально-диффузионных полупроводниковых приборов. Показано, что основными дефектами в исходных эпитаксиальных слоях являются сетки дислокаций с неравномерным распределением дислокаций как по толщине, так и по площади слоев в виде плотных рядов (дислокационных стенок) или полос скольжения, оказывающих влияние на электрические характеристики силовых приборов.

Ключевые слова: рентгеновская топография, кремний, дефекты, многослойные эпитаксиальные слои, силовые приборы, электрические характеристики.

Введение

Многослойные эпитаксиальные структуры на основе кремния являются сегодня основным исходным материалом для крупносерийного производства таких массовых силовых полупроводниковых приборов, как быстровосстанавливающиеся эпитаксиальные диоды (FRED), биполярные транзисторы с изолированным затвором (IGBT), силовые транзисторы с МОП-затвором (power MOSFET) и т. д. Ежегодный объем производства этих приборов превышает 5 млрд долл. Поэтому исследование качества кристаллов для выявления дефектов, оказывающих отрицательное влияние на электрические характеристики приборов и уменьшающих выход годных полупроводниковых структур, является важной практической и экономической задачей. Для анализа структурного совершенства и дефектов в монокристаллическом кремнии, а также в эпитаксиальных и диффузионных слоях на его основе в настоящее время успешно используют методы рентгеновской дифракционной топографии (РДТ) [1, 2]. Эти методы, неразрушающие по своему характеру воздействия на исследуемые образцы, позволяют выявлять и различать ростовые и технологические дефекты реальной структуры кристаллов, исследовать их распределение в кристаллических слоях, прослеживать их взаимодействие между собой и, таким образом, получать важную информацию о природе и эволюции дефектов в технологическом процессе изготовления приборов. Такая информация позволяет оптимизировать подбор исходных материалов и технологических режимов с целью уменьшения количества структурных и электрическиактивных дефектов, влияющих на качество приборов и определяющих их надежность.

Благодаря относительно низкому поглощению рентгеновских лучей обычно используемого диапазона длин волн, а также прочностным характеристикам монокристаллический кремний является удобным материалом для исследования методами РДТ. Возможности РДТ в исследовании дефектов его реальной структуры достаточно большие. При этом для анализа кристаллов

методами РДТ наиболее подходят образцы полупроводниковых кристаллов с «толстыми» активными слоями, для которых возможности данных методов реализуются наиболее полно. Такими структурами являются, в частности, мощные кремниевые приборы, в которых толщины активных слоев составляют от десятков до нескольких сотен микрометров и даже до миллиметра в случае приборов, рассчитанных на рабочие напряжения порядка 7—8 кВ и более. Однако имеются особенности, связанные и с конкретными характеристиками приборных структур.

Образцы и методы исследования

Исследовали исходные многослойные (2— 4-х слойные) эпитаксиальные структуры от отечественных производителей (ЗАО «ЭПИЭЛ», ЗАО «ГРУППА КРЕМНИЙ ЭЛ»), выращенные методами газотранспортной эпитаксии при температурах роста 1070—1200 °C. Эпитаксиальные слои выращивали на подложках кремния КЭС 0,01 и КДБ 0,005, легированных сурьмой (кремний марки КЭС) или бором (кремний марки КДБ) до значений удельного сопротивления 0,008—0,015 и 0,006—0,003 Ом · см соответственно. Диаметр подложек составлял 76 или 100 мм (3 или 4 дюйма), ориентация (100) или (111). Легирование эпитаксиальных слоев в процессе роста осуществляли примесью бора или фосфора, а удельное электрическое сопротивление слоев в приборных структурах варьировали от значений порядка 0,1 до 100 Ом · см при толщине единичного слоя от 5 до 70 мкм. Эпитаксиальные слои с различным типом проводимости выращивали в непрерывном технологическом процессе последовательного роста, при этом суммарную толщину всех эпитаксиальных слоев, предназначенных для изготовления активных р- и п-областей силовых приборов, варьировали от 25 до >150 мкм для случая высоковольтных приборных структур. Толщина исходных подложек для роста эпитаксиальных слоев обычно составляла 380 и 420 мкм для пластин диаметром 3 и 4 дюйма соответственно. Для защиты от автолегирования при эпитаксии использовали известные технологии «эпизос» – и «сэндвич» – методов, толщина защитных слоев составила от 15 до 25 мкм. Большие толщины эпитаксиальных слоев, высокий уровень легирования подложек и наличие на их обратной стороне защитного слоя для предотвращения автолегирования в процессе эпитаксиального роста были главными особенностями изученных образцов приборных структур с точки зрения их исследования методами РДТ, определившими применение конкретных методов исследования.

Основными методами исследования образцов являлись проекционные методы Ланга и обратного отражения Брэгга (аналог метода Берга—Баретта— Ньюкирка) в ${\rm Mo}K_{\alpha}$ -излучении для трансмиссионной геометрии и в ${\rm Cu}K_{\alpha}$ -излучений для геометрии от-

ражения соответственно [1, 2]. Использовали набор отражений от разных атомных плоскостей. Дополнительно применяли трансмиссионную методику получения «стоп-кадров» при регистрации сильно асимметричных отражений в условиях, когда ширина падающего на образец пучка рентгеновских лучей составляла от 1/3 до 1/5 толщины образца [3]. Эта методика дает возможность оценить распределение дефектов в локальных сечениях образцов по толщине и получить изображение границы эпитаксиальных слоев с подложкой.

Поскольку в исследуемых структурах защитный слой на обратной стороне подложек создавал нарушения кристаллической решетки, которые мешали получить четкие изображения дефектов в объеме структур при их исследовании по методу Ланга, иногда с исследуемых образцов приходилось удалять защитный слой. Удаление защитных слоев обычно проводили их сошлифовкой свободным абразивом с последующим удалением нарушенного шлифовкой слоя методами химического травления или химико-механической полировкой. Наиболее вероятная с точки зрения генерации структурных дефектов граница эпитаксиальных слоев с подложкой лежала на глубине, значительно превосходящей толщину анализируемого методами РДТ слоя. Поэтому при съемке таких структур в режиме регистрации обратного отражения для получения картины распределения дефектов по толщине приходилось прибегать к созданию в образцах косых шлифов. Поверхность такого шлифа была расположена под малыми углами к плоскостям эпитаксиальных слоев. При этом толщину информационного слоя при съемке кристаллов с дислокациями по методу обратного отражения оценивали по формуле

$$T = \frac{2,3}{\mu \left[\cos \operatorname{ec}(\theta + \alpha) + \cos \operatorname{es}(\theta - \alpha) \right]},$$

где и — линейный коэффициент фотоэлектрического поглощения для используемой длины волны рентгеновского излучения; θ — угол Брэгга; α — угол между отражающей плоскостью и поверхностью кристалла. Для наиболее удобного отражения 422 и CuK_{α} -излучения в случае (100) ориентации поверхности образцов эта толщина составляет 18,6 мкм. Косые шлифы изготавливали шлифовкой образцов, установленных на специальные оправки, с последующим удалением нарушенного шлифовкой слоя, мешающего получению четких изображений. В ряде случаев шлифовкой предварительно удаляли и «верхние» эпитаксиальные слои, чтобы получить изображение сетки дислокаций несоответствия вблизи границы слоев с подложкой. Очень полезным оказалось применение при исследовании готовых приборных структур методики «стоп-кадров». При сравнительно невысоком разрешении эта методика позволяла практически сразу получать ответ на вопрос, возникли ли в данном сечении структуры дислокации или нет, и не требовала удаления защитного слоя. Съемку образцов выполняли на установках типа УРТ, ДТС и КРС отечественного производства. Фиксацию топограмм проводили на фотопленку РТ–К (компания «Тасма», г. Казань).

Для контроля удельного электрического сопротивления и однородности эпитаксиальных слоев применяли стандартные зондовые методы определения локальных распределений легирующих примесей по глубине и площади эпитаксиальных слоев. Измерения проводили на вычислительноизмерительном комплексе ВИК-УЭС СР-16 (производства ЗАО «ИКИН», г. Москва), с использованием четырех- и однозондового вариантов измерений [4, 5]. Параметры поверхности пластин со стороны эпитаксиальных слоев контролировали методами оптической микроскопии и профилометрии на оптическом микроскопе и зондовой установке DEKTAK соответственно. Вольт-амперные характеристики (ВАХ) приборных структур силовых приборов с р—п-переходами, изготовленными по диффузионной технологии в НПО «ФИД-Техника», измеряли с помощью высоковольтных характериографов типов Л2-56 и ПНХТ. Диапазон обратных смещений высоковольтных p—n-переходов составлял от 0 до $2 \ \kappa B$ и измеряемых значений тока — от 0,1 мкА до 10 мА. Время жизни неосновных носителей заряда в слаболегированных базовых областях p—n-переходов диодных структур определяли методами измерения длительности фазы высокой обратной проводимости диода при переключении из проводящего в блокирующее состояние в условиях высокого уровня инжекции (метод Лэкса), а также в ряде случаев по наклону кривой спада послеинжекционной ЭДС на p—n-переходе во времени (метод Госсика).

Результаты и их обсуждение

Все исследованные структуры характеризовались наличием в эпитаксиальных слоях сеток дислокаций с переменной плотностью, максимальные значения которой наблюдали обычно в плоскости границы раздела (интерфейса) между эпитаксиальными слоями и исходной сравнительно сильнолегированной подложкой [6, 7]. На рис. 1 приведена топограмма структуры с ориентацией поверхности (100), полученная методом Ланга в положении, когда к фотопленке обращена рабочая поверхность структуры с эпитаксиальными слоями. Защитный слой с обратной поверхности подложки был удален. Из рис. 1 видно, что на фоне прямоугольной сетки дислокаций несоответствия проявляется также и кольцевая структура, обусловленная наличием ярко выраженной концентрационной неоднородности легирующей примеси в исходной сильнолегированной подложке. Топограмма представляет собой редкий случай одновременного наблюдения главных особенностей реальной структуры как эпитаксиальных слоев, так

и подложки. Обычно на топограммах такого типа структура подложки не проявляется или проявляется очень слабо. Однако особенности кристаллической структуры подложек достаточно легко выявляются методами обратного отражения с их нерабочей стороны после удаления защитного слоя. На рис. 2 показаны примеры таких топограмм подложек, легированных бором с концентрацией $3.5 \cdot 10^{19} \, \mathrm{cm}^{-3}$ (a) и $(1-2) \cdot 10^{19} \, \mathrm{cm}^{-3}$ (б). Из рис. 2 видно, что дислокации в подложках практически отсутствуют. Полосы роста

Рис. 1. Пример одновременного выявления на рентгеновской топограмме сетки дислокаций несоответствия в трехслойной эпитаксиальной структуре и концентрационной неоднородности в сильнолегированной подложке. Метод Лага, MoK_{α} -излучение, отражение 220

Рис. 2. Кольцевая концентрационная неоднородность подложек, легированных бором до разных концентраций: $a-3.5\cdot 10^{19}\,\mathrm{cm^{-3}};\, \emph{6}-(1-2)\cdot 10^{19}\,\mathrm{cm^{-3}}.$ Си K_{α} -излучение, отражение 422

во фронтальном для пластин изображении проявляются в виде круговых зон и соответствуют неравномерному распределению в подложках легирующей примеси, характерному для выращивания кремния методом Чохральского.

На рис. 3 показаны топограммы образцов с ориентацией поверхности (111) и (100), полученные методом Ланга так, что к фотопленке обращена поверхность с эпитаксиальными слоями. В обоих случаях видна сетка дислокаций несоответствия, отвечающая симметрии образцов. Следует обратить внимание на то, что изображения рядов дислокаций в сетке имеют различную интенсивность. Это указывает на неоднородное распределение дислокаций в сетках, когда некоторые дислокации образуют плотные ряды или стенки. Такие ряды состоят из близко расположенных параллельных дислокаций, изображения отдельных из которых не разрешаются на снимках. Неравномерность фона на рис. 3, а связана с удалением защитного слоя с обратной стороны образца. Обычно такая операция несколько увеличивает изгиб пластин. По данным топограммам нельзя с уверенностью судить, где и на какой глубине находится в образцах дислокационная сетка, плоская она или объемная. Это было выяснено съемками образцов с последовательно удаленными эпитаксиальными слоями и подтверждено с помощью топограмм, полученных методом отражения для специально приготовленных косых шлифов.

Плотность дислокаций в сетках изменяется в направлении от границы с подложкой к наружной эпитаксиальной рабочей поверхности структур.

Рис. 3. Сетки дислокаций несоответствия в эпитаксиальных структурах с ориентацией поверхности 111 (a) и 100 (σ) с неравномерным распределением дислокаций. Метод Ланга, Мо K_{α} –излучение, отражение 220

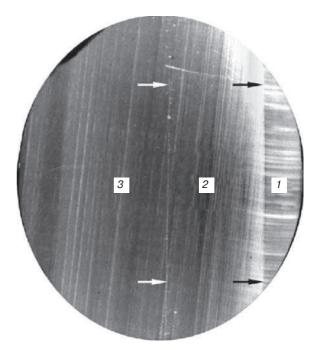


Рис. 4. Распределение дефектов в косом шлифе эпитаксиальной структуры:

1, 2, 3 — области подложки, эпитаксиальных слоев и рабочей поверхности образца соответственно. Стрелки — границы между этими областями. Диаметр образца 20 мм.

 CuK_{α} -излучение, отражение 422

Максимальное значение она имеет у границы с подложкой, т. е. на интерфейсе, и постепенно уменьшается в направлении к наружной рабочей поверхности структуры. Таким образом, наблюдаемая сетка дислокаций является объемной по своему строению и сеткой дислокаций несоответствия по своему виду и происхождению. Пример топограммы, полученной от косого шлифа такой структуры методом обратного отражения, показан на рис. 4. Косой шлиф был приготовлен так, чтобы на поверхность образца выходили и часть подложки, и эпитаксиальные слои, и часть рабочей наружной поверхности пластины. Эти области обозначены на снимке цифрами, а границы между областями — стрелками. При съемке косых шлифов в асимметричном отражении изображения приграничных областей шлифов перекрываются (с учетом ограниченной толщины информационного слоя), однако даже в этом случае можно увидеть следующее:

- подложка имеет «полосчатую» структуру, отображающую ее примесную неоднородность, дислокаций в подложке практически нет;
- сетка дислокаций несоответствия возникает на интерфейсе и в этом месте имеет максимальную плотность:
- в направлении к рабочей наружной поверхности структуры сетка дислокаций сильно разреживается, так что поверхности достигают в основном лишь плотные ряды дислокаций в ней;
- происхождение сетки дислокаций связано с несоответствием параметров решетки сравнительно

слабо легированных эпитаксиальных слоев и сильнолегированной подложки, достигающим значений 10^{-3} — 10^{-4} . Несоответствие параметров решетки рассчитывали отдельно для слоя и подложки по формуле

$$\frac{a_{\text{Si}} - a_i}{a_{\text{Si}}} = \frac{1}{3} c V_{\text{Si}} \left(\frac{R_i^3}{R_{\text{Si}}^3} - 1 \right),$$

где $a_{\rm Si},~a_i$ — параметры решетки чистого и легированного кремния соответственно; c — концентрация легирующей примеси; $V_{\rm Si}$ — объем элементарной ячейки кремния; $R_i,~R_{\rm Si}$ — ковалентные радиусы примеси и кремния соответствия.

Также исследовали структуры со сравнительно низким значением параметра несоответствия решеток слоев и подложки. Однако даже для таких структур на рабочей поверхности иногда проявлялся рельеф в виде линий и отдельных «холмиков», связанных, как выяснилось, с выходом рядов дислокаций и отдельных включений на внешнюю поверхность.

Топограмма такого типа структур показана на рис. 5. Она получена методом Ланга. Обращает на себя внимание следующее:

- в подложке не проявляется концентрационная неоднородность (нет изображений полос роста) и, повидимому, отсутствуют дислокации;
- в самих эпитаксиальных слоях присутствуют дислокации и включения;
- дислокации распределены крайне неравномерно как по толщине слоев, так и по площади, образуя достаточно плотные ряды, часто наблюдаемые в виде полос скольжения;
- включения иногда расположены на следах царапин, оставшихся после полировки во время при-

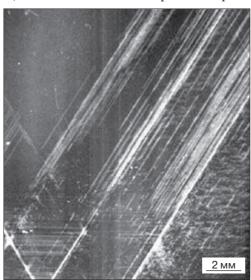


Рис. 5. Дефектная структура эпитаксиальной структуры в случае малого несоответствия параметров решетки слоев и подложки (отдельные дислокации, дислокационные стенки и полосы скольжения, отдельные включения и микровключения на следах царапин на поверхности подложки). Метод Ланга со стороны эпитаксиальных слоев после удаления защитного слоя.

 MoK_{α} -излучение, отражение 220

готовления подложки, но встречаются и отдельные включения:

 отдельные относительно крупные включения находятся на пересечении рядов дислокаций и, возможно, являются их источниками.

С помощью применения различных методов РДТ было выяснено, что большинство мелких включений лежит на границе слоев с подложкой, т. е. находится практически в подложке. Что касается видимого визуально рельефа рабочей поверхности структур, то он обусловлен выходом на поверхность наиболее плотных рядов дислокаций и полос скольжения, а также отдельных включений.

Влияние дефектов на электрические характеристики приборных структур

На основе исходных эпитаксиальных многослойных структур с помощью методов ионной имплантации и термической диффузии имплантированной примеси, а также последующих постростовых фотолитографических операций и операций формирования омических контактов изготавливали рабочие партии высоковольтных силовых приборов ключевого типа. Следует отметить, что использованные в этих операциях технологические режимы (дозы имплантации, температура и длительность диффузионных процессов и постростовых операций) практически не оказывали заметного влияния на изменение дефектной структуры кристаллов. Таким образом, количество, тип и распределение дефектов кристаллической структуры в конечных приборных образцах определялись преимущественно состоянием исходных многослойных эпитаксиальных пластин, т. е. режимами эпитаксиальных процессов, подложками, используемыми для этого роста, а также параметрами эпитаксиальных и защитных слоев. При исследовании электрических характеристик силовых приборов с высоковольтными p—n-переходами на основе эпитаксиальных структур было установлено, что равномерные поля сеток дислокаций несоответствия с плотностью дислокаций до 1000 дисл./см² в плоскости p—n-перехода практически не оказывали влияния на ВАХ высоковольтных диодов и время жизни неосновных носителей заряда в их слаболегированных базовых слоях. В то же время высоковольтные p—n-переходы на основе структур с неоднородным распределением дислокаций в виде полос скольжения (рис. 5) или с локальными значениями плотности дислокаций более $1 \cdot 10^6$ дисл./см 2 в сетках дислокаций несоответствия характеризовались пониженными среднестатистическими рабочими напряжениями р—п-переходов в блокирующем состоянии и повышенными генерационно-рекомбинационными токами смещенных в блокирующем направлении p-nпереходов. При этом для значительной части таких приборов характер зависимости «обратного» тока от приложенного в запорном направлении напряжения

не подчинялся теории Шокли-Нойса-Саа, т. е. генерационно-рекомбинационный ток увеличивался с повышением обратного смещения U на диоде пропорционально \sqrt{U} только на начальном участке ВАХ при малых U, а начиная с некоторых пороговых значений U, возрастал практически линейно с приложенным к р—п-переходу обратным смещением. На этом «особом» линейном участке обратной ВАХ ток имел очень слабую температурную зависимость, что свидетельствовало о его, скорее, «полевой» природе, а не термоактивационной, как это должно быть по классической теории Шокли—Нойса—Саа. Такой характер обратных ВАХ может объясняться полевыми механизмами переноса заряда через «каналы» дислокаций, пронизывающих как сам высоковольтный p—n-переход, так и всю область, которую занимает слой пространственного заряда, блокирующий напряжение при обратном смещении.

Ярким примером влияния высокой плотности дислокаций на электрические характеристики силовых приборов являлся факт высокого процента брака в партиях силовых диодов на основе эпитаксиальных структур с «плотными» дислокационными стенками. Было проведено сравнение двух типов пластин с одинаковыми электрическими и геометрическими параметрами эпитаксиальных слоев, но отличающихся дефектной структурой и ВАХ диодов на их основе: пластин с плотной сеткой дислокаций (тип 1, «Кремний-Эл», г. Брянск) и без заметной сетки (тип 2, «Эпиэл», г. Зеленоград). Для пластины типа 1 (партия К4528) с неравномерным распределением дислокаций и образованием полос скольжения (см. рис. 5) среднее значение напряжения обратного смещения, при котором ток p—n-перехода достигал значения 0,1 мА, составляло 67 В, а распределение значений обратного напряжения в партии из таких пластин приведено в таблице.

Для пластины типа II (партия ФД1351) без заметной сетки дислокаций этот же параметр был равен 213 В, а распределение значений обратных напряжения в партии из таких пластин приведено в таблице.

При этом среднее значение напряжений лавинного пробоя структур типа II было близко к ожидае-

Распределение значений обратного напряжения в пластине

Напряжение обратного смещения, В	Распределение в пластине, %	
	I тип	II тип
0—40	28	7
41—80	44	0
81—120	14	0
121—160	0	7
161—200	0	14
201—240	7	45
241—280	_	27

мому теоретическому пределу, тогда как на приборах группы I достичь лавинного пробоя p—n-переходов было вообще невозможно.

Таким образов, характерные зависимости генерационно-рекомбинационного тока приборов типа 1 не описываются классической теорией Шокли— Нойса—Саа, а определяются полевым механизмом переноса зарядов в областях объемного заряда высоковольтных p—n-переходов, прошитых плотными дислокационными рядами в виде полос скольжения или дислокационных стенок.

Заключение

Методами РДТ исследованы дефекты и их распределение в объеме подложек эпитаксиалных слоев приборных структур, предназначенных для изготовления силовых приборов ключевого типа. Установлено, что основной характеристикой реальной структуры сильно легированных подложек с удельным сопротивлением менее 0,003 Ом · см является концентрационная неоднородность в виде круговых зон.

При этом дислокации в исходных подложках практически отсутствуют. В эпитаксиальных слоях практически всегда наблюдается объемная сетка дислокаций, характерной особенностью которой является неоднородность в распределении дислокаций как по толщине, так и по площади слоев. Показано, что основной вклад в дефектность активных рабочих слоев исследованных приборных структур вносят дефекты, образованные в процессах эпитаксиального роста, а не в термодиффузионных процессах изготовления конечных приборных структур. При этом установлено, что основным фактором, определявшим конечное качество приборных слоев, являлось качество исходных подложек для эпитаксиального роста: дефекты их кристаллической структуры и качество обработки поверхности подложек «транслировались» в выращенные на них эпитаксиальные слои на глубину в десятки микрометров. В случае большого несоответствия параметров решетки (10⁻³—10⁻⁴) слабо легированных эпитаксиальных слоев и сильно легированной подложки на интерфейсе возникала сетка дислокаций несоответствия. Вероятно, неравномерность распределения в ней дислокаций связана с дефектами структуры подложки. В случае малого несоответствия параметров решетки эпитаксиальных слоев и подложки источниками дислокаций на интерфейсе были как собственные дефекты подложки, так и привнесенные механической обработкой ее поверхности при шлифовке-полировке. При подготовке поверхности подложки наиболее глубокие царапины заполировываются, а при последующем эпитаксиальном росте «вскрываются» и проявляются в виде цепочки точечных микродефектов, которые могут служить в дальнейшем источниками дислокаций в эпитаксиальных слоях. Методами РДТ показано, что большинство источников для образования в слоях полос скольжения лежит на интерфейсе, т. е. принадлежит практически подложке. Возникнув на интерфейсе, в процессе эпитаксиального роста полосы скольжения распространяются в объем слоев и приводят к сильно выраженной неоднородности в распределении дефектов гораздо большей мощности, чем отдельные дислокации. Именно высокая неоднородность в распределении мощных дефектов в структурах первого типа является основной причиной ухудшения электрических характеристик приборов на их основе. Неоднородность в распределении дислокаций в сетках дислокаций несоответствия большой плотности тоже приводит к ухудшению рабочих характеристик приборов.

Показано, что использованные в работе методы РДТ позволили выявить и различить ростовые и технологические дефекты приборных структур, исследовать их распределение, проследить их взаимодействия между собой и, в конечном итоге, получить важную качественную и количественную информацию о природе и эволюции дефектов в технологическом процессе изготовления приборных структур. Эта информация позволила оптимизировать подбор исходных материалов и технологических процессов с целью снижения уровня «критических» структурных электрически—активных дефектов кристаллов, способных влиять на характеристики изготавливаемых полупроводниковых приборов [8], повысить

выход годных структур и в значительной степени увеличить надежность их работы в экстремальных и аварийных режимах.

Библиографический список

- 1. **Боуэн, Д. К.** Высокоразрешающая рентгеновская дифрактометрия и топография / Д. К. Боуэн, Б. К. Таннер. СПб. : Наука, 2002.-274 с.
- 3. **Шульпина, И. Л.** Некоторые возможности рентгеновской топографии для исследования и контроля технологических дефектов в кремнии / И. Л. Шульпина // Кристаллография. 1992. Т. 37, вып. 2. С. 451—457.
- 4. **Анфимов, И. М.** Однородность распределения удельного электросопротивления в монокристаллическом кремнии, выращенном методом Чохральского / И. М. Анфимов, В. С. Бердников, Е. А. Выговская, С. П. Кобелева, А. А. Смирнов, Ю. В. Осипов, О. В. Торопова, В. Н. Мурашев // Изв. вузов. Материалы электрон. техники. 2007. № 4. С. 40—44.
- 5. **Павлов, Л. П.** Методы измерения параметров полупроводниковых материалов / Л. П. Павлов. М. : Высшая школа, 1987. 239 с.
- 6. **Козлов, В. А.** Исследование дефектов в эпитаксиальнодиффузионнных приборных структурах на основе кремния методами рентгеновской топографии / В. А. Козлов, И. Л. Шульпина // Тез. докл. VIII междунар. конф. «Кремний—2011» М., 2011. С. 140.
- 7. **Шульпина, И. Л.** Возможности рентгеновской топографии в исследовании многослойных приборных структур на основе кремния / И. Л. Шульпина, В. А. Козлов // Тез. докл. V Междунар. семинара «Современные методы анализа дифракционных данных». Великий Новгород, 2011. С. 193—194.
- 8. **Kittler, M.** Gettering and defect engineering in semiconductor technology / M. Kittler, H. Richter // XIII: GADEST 2009: Proc. of the XIII-th Int. Autumn Meeting // Solid state phenomena. 2010. V. 156–158. 592 p.

Статья написана по материалам докладов, представленных на Международных конференциях XTOP-2012 и «Кремний-2012» (г. Санкт-Петербург).

Адрес: Ленинский проспект, д. 4, главный корпус МИСиС, цокольный этаж.

Тел.: (495) 638-44-28, (495) 638-45-31

Издательский Дом МИСиС предлагает:

Научно-образовательные центры МИСиС / Колл. авторов. – М.: Издательский дом МИСиС, 2010. – 176 с. ISBN 978-5-87623-363-9

Представлена информация о научно-образовательных центрах различного профиля Национального исследовательского технологического университета «МИСиС», ориентированных на потребителя как научной продукции, так и образовательных услуг. Подобные центры — новая форма организации научно-исследовательской и учебной работы в системе высшего образования в современных рыночных условиях.

Книга представляет большой интерес для научных и инженернотехнических работников, производителей наукоемкой продукции и специалистов, занятых в областях разработки новых материалов и высоких технологий, а также для руководителей организаций и предприятий, заинтересованных в целевой подготовке высококвалифицированных специалистов.

Книгу можно приобрести за наличный и безналичный расчет