МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ. ПОЛУПРОВОДНИКИ

УДК 621.315.592

ИЗОТОПНЫЕ ЭФФЕКТЫ В СПЕКТРАХ ИК-ПОГЛОЩЕНИЯ ЭЛЕКТРИЧЕСКИ АКТИВНЫХ ПРИМЕСЕЙ В КРЕМНИИ-28, 29 И 30 С ВЫСОКИМ ИЗОТОПНЫМ ОБОГАЩЕНИЕМ

© 2012 г. Т. В. Котерева, А. В. Гусев, В. А. Гавва, Е. А. Козырев Институт химии высокочистых веществ им. Г. Г. Девятых РАН

Представлены результаты исследования спектров ИК-поглощения мелких доноров и акцепторов в высокочистых монокристаллах стабильных изотопов кремния ²⁸Si(99,99%), ²⁹Si(99,92%) и ³⁰Si(99,97%), выращенных методом бестигельной зонной плавки. Определено содержание остаточных примесей бора, фосфора и мышьяка в исследуемых монокристаллах с пределом обнаружения 1 · 10¹², 4 · 10¹¹ и 1 · 10¹² ат/см³ соответственно. Результаты ИК-спектроскопического определения содержания мелких доноров и акцепторов хорошо согласуются с данными о концентрации свободных носителей заряда, полученными из измерений эффекта Холла. Изучены параметры линий поглощения примесей бора и фосфора в монокристаллах изотопов кремния. Показано, что изменение изотопного состава кремния приводит к сдвигу энергетического спектра мелких примесных центров в область высоких энергий с ростом атомной массы изотопа.

Ключевые слова: кремний, стабильные изотопы, монокристаллы, спектры ИК-поглощения, электроактивные примеси.

Введение

В последнее десятилетие активно развивается новое направление в технологии кремния — получение высокочистых кристаллов стабильных изотопов кремния [1, 2]. Проводятся исследования влияния изотопного состава на свойства кремния [3].

Наиболее сильное влияние на электрофизические и оптические свойства кремния оказывают примеси элементов III и V групп Периодической системы элементов Д.И.Менделеева, создающие в запрещенной зоне кремния мелкие акцепторные и донорные уровни. Одним из эффективных методов определения электроактивных примесей в полупроводниках является абсорбционная ИК-спектроскопия. Изотопный состав кремния может заметно влиять на параметры полос ИК-поглощения в кристаллах [4, 5]. Поэтому при ИКспектроскопическом определении электроактивных примесей необходимо учитывать изотопические эффекты.

Теоретическая зависимость энергии ионизации мелких доноров и акцепторов от средней изотопной массы изучена авторами работы [4]. Показано, что сдвиг линий поглощения ³⁰Si относительно ²⁸Si составляет (0,47 + 0,27) см⁻¹ и определяется изотопной зависимостью диэлектрической проницаемости (как М^{-1/2}, где М — средняя атомная масса) и эффективной массы носителей. Изотопное обогащение приводит к сужению линий и изменению энергии связи для бора и фосфора [5]. Степень изотопного обогащения ранее изученных образцов кремния ²⁹Si и ³⁰Si составляла ~90 %. Исследование высокочистых монокристаллов кремния ²⁸Si, ²⁹Si и ³⁰Si с более высокой степенью изотопного обогащения, с содержанием фоновых примесей кислорода и углерода $n \cdot 10^{15}\,\mathrm{at/cm^3}$ позволяет продолжить изучение изотопных эффектов в энергетических спектрах примесей на новом уровне.

Образцы и методы исследования

Образцы изотопов кремния были получены по силановой технологии [1]. Монокристаллы выращивали методом бестигельной зонной плавки в атмосфере аргона в кристаллографическом направлении (100). В исследуемых образцах ²⁸Si, ²⁹Si и ³⁰Si концентрация углерода и кислорода составляла <n · 10¹⁵ ат/см³. Изотопный состав (табл. 1) определяли методом лазерной массспектрометрии [6].

Для сравнительных измерений использовали образцы кремния *p*- и *n*-типа проводимости природного изотопного состава, марок КДБ-12, КЭФ-4,5, а также образцы моноизотопного ²⁸Si (Si28-1) со степенью обогащения 99,98 % и ³⁰Si (99,74 %).

Образцы представляли собой плоскопараллельные полированные пластины диаметром 5—10 мм; для ^{nat}Si и ²⁸Si толщиной 1—3 мм, *n*- и *p*-типа проводимости, для ²⁹Si и ³⁰Si толщиной 1 мм р-типа проводимости.

Спектры поглощения кремния в диапазоне 200—700 см⁻¹ регистрировали с помощью Фурьеспектрометра IFS113v (Bruker), оснащенного детектором (DTGS с окном из полиэтилена), делителем пучка (лавсановая пленка 3,5 мкм), а также криостатом замкнутого цикла с оптическими окнами из КРС-5 для измерений при гелиевых температурах. Для наблюдения основных и компенсирующих примесей использовали межзонный подсвет от лампы накаливания. Измерения проводили путем накопления 100—500 сканов при спектральном разрешении 0,1—1 см⁻¹. Оценки концентрации электрически активных примесей по спектрам ИК-поглощения проводили с использованием калибровочных коэффициентов для кремния природного изотопного состава [7, 8].

Концентрацию нескомпенсированных носителей заряда определяли из измерений эффекта Холла. Погрешность измерений не превышала 20 %.

Результаты и их обсуждение

Исследование влияния изотопного состава кремния на параметры полос ИК-поглощения. На рис. 1 представлены спектры ИК-поглощения кристаллов ²⁸Si, ²⁹Si и ³⁰Si. Основной электроактивной примесью во всех образцах был бор. При межзонном подсвете в спектрах появлялись линии донорных примесей, основной из которых был фосфор. В спектрах наблюдались также линии мышьяка. Форма спектральных линий хорошо описывается функцией Лоренца. Из рис. 1 видно, что изменение изотопного состава образцов приводит к сдвигам полос поглощения. Полосы поглощения фосфора и бора в спектрах кремния ²⁹Si и ³⁰Si по сравнению с кремнием ²⁸Si сдвигаются в область высоких энергий с увеличением средней атомной массы приблизительно на 0,1 и 0,3 см⁻¹ соответственно.

Положения максимумов полос поглощения примесей бора и фосфора, а также их сдвиги, обусловленные изотопными эффектами, представлены в табл. 2. Точность определения положения максимумов пиков составила $\pm 0,01$ см⁻¹.

Сравнение с результатами работы [5], представленными в табл. 2, показало, что рассчитанные

нами сдвиги полос поглощения бора и фосфора в кремнии ²⁸Si относительно кремния ³⁰Si меньше на величину не менее ~0,05—0,1 см⁻¹. Величина сдвига повышается с увеличением энергии переходов.

Известно, что параметры спектральных полос в изотопно-чистых кристаллах изменяются по сравнению с природным кремнием [5], поэтому необходимо исследовать не только положения максимумов, но и полуширину линий (FWHM — ширина пика на половине его высоты) примесного поглощения. Спектроскопические параметры наиболее интенсивных линий поглощения примесей бора и фосфора в монокристаллах изотопов кремния для спектрального разрешения 0,5 см⁻¹ приведены в табл. 3. Изменение полуширины полос по сравнению с ^{nat}Si составило 100 %.

В табл. 4 приведены спектральные характеристики линий, соответствующих переходам бора $2\Gamma_8$ и фосфора $2p_0$ полученных описанием функцией Лоренца полос спектров образцов с различным изотопным обогащением. Из данных табл. 4 видно, что частоты максимумов полос сдвигаются в высокоэнергетическую область при увеличении средней атомной массы кремния.

Исследование формы линий поглощения бора и фосфора при различном спектральном разрешении, показало, что влияние изотопного состава на полуширину полос проявляется при разрешении <0,3 см⁻¹.

Таблица 1

Изотопный состав исследуемых образцов кремния

Образец	Содержание изотопа, % (ат.)					
	²⁸ Si	²⁹ Si	³⁰ Si			
²⁸ Si	99,9956	0,0042	0,00021			
²⁹ Si	0,023	99,923	0,054			
³⁰ Si	0,005	0,021	99,974			

Рис. 1. Спектры поглощения примесей бора и фосфора в образцах изотопов кремния: 1—^{nat}Si; 2—²⁸Si; 3—²⁹Si; 4—³⁰Si

Таблица 2

При- месь перехода [9]	Обозначение	Положение максимума линий поглощения, см ⁻¹			Сдвиг частоты линий поглощения, см ⁻¹		
	перехода [9]	²⁸ Si	²⁹ Si	³⁰ Si	$v(^{28}Si) - v(^{29}Si)$	$v (^{28}Si) - v (^{30}Si)$	$v(^{28}Si) - v(^{30}Si)$ [5]
	$2p_0$	275,27	*	275,33	*	-0,04	-0,06
Р	$2p_{\pm}$	315,99	316,01	316,06	-0,02	-0,06	-0,10
	$3p_0$	323,39	*	323,46	*	-0,07	0,10
	$1\Gamma_8$	244,94	*	245,22	*	-0,28	*
	$2\Gamma_8$	278,26	278,42	278,56	-0,16	-0,30	-0,31
	3Γ ₈	309,49	309,52	309,81	-0,30	-0,32	-0,32
	$1\Gamma_6$	319,34	319,40	319,67	-0,06	-0,33	-0,35
В	$1\Gamma_7$	320,15	320,31	320,440	-0,16	-0,29	-0,31
	$4\Gamma_8$	322,04	322,06	322,300	-0,03	-0,28	-0,37
	$5\Gamma_8$	334,47	334,58	334,77	-0,12	-0,30	-0,36
	$2\Gamma_7$	340,07	340,32	340,35	-0,05	-0,28	-0,38
	$7\Gamma_8$	342,30	342,46	342,49	-0,16	-0,19	*
	3Γ ₇	344,77	*	345,11	*	-0,33	-0,38
	$5\Gamma_7$	352,56	*	352,92	*	-0,36	-41

Положения максимумов линий поглощения и сдвиги частот примесей В и Р в изотопно-обогащенном кремнии ²⁸Si, ²⁹Si и ³⁰Si

* Не определялось.

Таблица 3

Положения максимумов и полуширины наиболее интенсивных линий поглощения примесей В и Р в монокристаллах изотопов кремния для спектрального разрешения 0,5 см⁻¹

14	ν _{max} , см ^{−1}	FWHM, см ⁻¹	v_{max}, cm^{-1}	FWHM, см ⁻¹	ν _{max} , см⁻¹	FWHM, cm ⁻¹	ν _{max} , см ^{−1}	FWHM, cm ⁻¹
ИЗОТОП		Бор			Фосфор			
^{nat} Si	320,09	2,48	278,70	2,20	316,34	2,11	275,07	1,90
²⁸ Si	319,35	1,20	278,33	0,53	316,03	0,82	275,06	0,78
²⁹ Si	319,89	1,16	278,43	1,02	316,07	1,71	276,12	0,76
³⁰ Si	320,12	1,26	278,68	1,04	316,05	0,81	276,27	0,51

При разрешении 1 и 0,5 см⁻¹ значения полуширины полос составляют ~1 см⁻¹. При разрешении ~0,1 см⁻¹ полосы сужаются, минимальные значения полуширины составляют 0,2 см⁻¹.

В спектрах образцов, обогащенных изотопами ²⁸Si, ²⁹Si и ³⁰Si, положения максимумов линий фосфора и бора в пределах погрешности совпадают с данными работ [5, 10] для природного и изотопно– обогащенного кремния. Изотопические сдвиги полос поглощения бора и фосфора в ²⁸Si относительно кремния ³⁰Si невелики и не превышают ~0,3 см⁻¹, а полуширина полос поглощения определяется спектральным разрешением.

Таким образом, полученные результаты свидетельствуют о том, что полосы поглощения 320, 316 и 382 см⁻¹ для примесей бора, фосфора и мышьяка соответственно, можно использовать для определения их концентрации в изотопно-обогащенном кремнии, с использованием методики, основанной на вычислении площади под кривой.

Определение содержания электрически активных примесей в монокристаллах изотопов кремния. Для определения концентрации примесей бора и фосфора регистрировали спектры образцов ²⁹Si и ³⁰Si при температуре 16 К со спектральным разрешением 0,5 и 1 см⁻¹. Содержание электрически активных примесей определяли, основываясь на подходах, изложенных в стандарте АСТМ. Базовые линии для обнаруженных примесей проводили в соответствии со стандартом для кремния природного изотопного состава [11] (рис. 2). Для определения содержания электрически активных примесей использовали градуировочные коэффициенты из работ [7, 8] для кремния природного изотопного состава.

Концентрации примесей бора и фосфора были вычислены для образцов кремния ²⁹Si и ³⁰Si.

Таблица 4

Таблица 5

Характеристики полос поглощения в области 278 см⁻¹ в спектрах образцов с различным изотопным обогащением для спектрального разрешения res 0,5 см⁻¹

Изотоп	v, см ⁻¹	FWHM, см ⁻¹	ν, см⁻¹	FWHM, см ⁻¹	
	Бор		Фосфор		
²⁸ Si:					
99,91~%	278,32	1,2	275,10	0,57	
99,995~%	278,26	0,83	275,09[5]	—	
²⁹ Si:					
$91,37\ \%\ [5]$	278,44	_	275,13	—	
99,97~%	278,51	0,70	275,0	0,98	
³⁰ Si:					
89,80 % [5]	278,57	_	275,147	—	
$99,\!74~\%$	278,79	0,80	275,23	0,97	
$99{,}92~\%$	278,68	0,86	275,33	0,79	

Рис. 2. Базовые линии в спектрах поглощения образцов изотопно-обогащенного кремния ²⁹Si (1) и ³⁰Si (2). Разрешение — 1 см⁻¹

В ИК-спектрах образца ³⁰Si была найдена линия при 382 см⁻¹, которая отнесена к примеси мышьяка. Сдвиг максимума этой линии в ³⁰Si относительно спектра кремния ²⁸Si составил 0,3 см⁻¹. По площади под кривой была определена концентрация примеси мышьяка.

Результаты определения содержания примесей бора, фосфора и мышьяка в кремнии природного изотопного состава и в изотопно-обогащенном кремнии представлены в табл. 5.

Проверку правильности проводили путем сопоставления данных о суммарной концентрации электрически активных примесей, полученных методом ИК-спектроскопии, с результатами определения концентрации свободных носителей из измерений эффекта Холла (табл. 6). Результаты измерений эффекта Холла согласуются с данными

Содержание примесей В, Р и Аѕ в образцах кремния, обогащенного изотопами, по данным ИК–спектроскопии

Образец	В, ат/см ³	Р, ат/см ³	As, ат/см ³
КДБ-12	$(1,2\pm0,2)\cdot10^{15}$	$(3,6\pm0,2)\cdot10^{14}$	$(7,1\pm0,5)\cdot10^{13}$
КЭФ-4,5	$(2,7\pm0,2)\cdot10^{14}$	$(1,9\pm0,3)\cdot10^{15}$	$(3,6\pm0,6)\cdot10^{13}$
²⁸ Si	$(4,1\pm0,6)\cdot10^{13}$	$< 4 \cdot 10^{11}$	$< 1 \cdot 10^{12}$
²⁹ Si	$(8,0\pm 1,2)\cdot 10^{13}$	$(7,7\pm0,3)\cdot10^{12}$	$< 5 \cdot 10^{12}$
³⁰ Si	$(2,6\pm0,3)\cdot10^{14}$	$(2,6\pm0,3)\cdot10^{13}$	$(6,8\pm0,7)\cdot10^{12}$

Таблица 6

Результаты определения концентрации нескомпенсированных носителей заряда

Образец	Концентрация нескомпенсированных носителей заряда, ат/см ³				
	ИК–спектроскопия	Эффект Холла			
^{nat} Si	$(8,4\pm1,3)\cdot10^{14}$	$1,4\cdot 10^{15}$			
²⁸ Si	$(4,1\pm0,6)\cdot10^{13}$	$4,2\cdot 10^{13}$			
²⁹ Si	$(7,2\pm 1,1)\cdot 10^{13}$	$8,8\cdot 10^{13}$			
³⁰ Si	$(1,7\pm0,3)\cdot10^{14}$	$1,4\cdot 10^{14}$			

Таблица 7

Пределы обнаружения метода ИК–спектроскопии для примесей В, Р и As в образцах изотопно–обогащенного кремния

Изотоп	Предел обнаружения, ат/см ³					
кремния	В	Р	As			
²⁸ Si	$1\cdot 10^{12}$	$4\cdot 10^{11}$	$1\cdot 10^{12}$			
²⁹ Si	$2\cdot 10^{13}$	$6\cdot 10^{12}$	$5\cdot 10^{12}$			
³⁰ Si	$4\cdot 10^{13}$	$9\cdot 10^{12}$	$2\cdot 10^{13}$			

ИК-спектроскопии в пределах погрешности эксперимента.

Погрешность ИК-спектроскопического определения примесей бора, фосфора и мышьяка не превышала 15 %. Возможность определения содержания бора в кремнии, обогащенном ²⁸Si изотопом с помощью коэффициента для кремния природного состава, была показана авторами работы [10].

Пределы обнаружения примесей бора, фосфора и мышьяка в образцах изотопно-обогащенного кремния (табл. 7) были определены по 3S-критерию для вероятности 0,95 по уровню шума вблизи линий поглощения.

Заключение

В оптическом диапазоне 200—500 см⁻¹ при температуре T = 16 К исследованы спектры ИК-поглощения изотопно-высокообогащенного кремния ²⁸Si, ²⁹Si, ³⁰Si. Определены изотопические сдвиги

8

максимумов полос поглощения фосфора и бора в кремнии 29 Si и 30 Si относительно 28 Si.

Изучена форма полос поглощения примесей бора и фосфора при 278 и 275 см⁻¹ в образцах с разным изотопным составом. Установлена зависимость частот максимумов линий поглощения от средней атомной массы изотопов кремния.

Достигнуты пределы обнаружения для примесей бора, фосфора и мышьяка в изотопно-обогащенном кремнии ²⁸Si, ²⁹Si и ³⁰Si — $1 \cdot 10^{12}$, $4 \cdot 10^{11}$ и $1 \cdot 10^{12}$ ат/см³ соответственно.

Библиографический список

1. Девятых, Г. Г. Высокочистый монокристаллический моноизотопный кремний–28 для уточнения числа Авогадро / Г. Г. Девятых, А. Д. Буланов, А. В. Гусев, И. Д. Ковалев, В. А. Крылов, А. М. Потапов, П. Г. Сенников, С. А. Адамчик, В. А. Гавва, А. П. Котков, М. Ф. Чурбанов, Е. М. Дианов, А. К. Калитеевский, О. Н. Годисов, Х.-Й. Поль, П. Беккер, Х. Риман, Н. В. Абросимов // ДАН. – 2008. – Т. 421, № 1. – С. 61—64.

2. Гусев, А. В. Получение монокристаллического моноизотопного кремния-29 / А. В. Гусев, В. А. Гавва, Е. А. Козырев, А. М. Потапов, В. Г. Плотниченко //Неорган. материалы. – 2011. – Т. 47, № 7. – С. 773—776.

3. Cardona, M. Isotope effects on the optical spectra of semiconductors / M. Cardona, M. L. Thewalt // Rev. of Modern Phys. – 2005. – N77.– P. 1173–1224.

УДК 621.315.592

4. **Karaiskaj, D.** Dependence of the ionization energy of shallow donors and acceptors in silicon on the host isotopic mass / D. Karaiskaj, T. A. Meyer, M. L. W. Thewalt, M. Cardona // Phys. Rev. B. – 2003. – V. 68, N 7. – P. 121201–1–4.

5. **Steger, M.** Shallow impurity absorption spectroscopy in isotopically enriched silicon / M. Steger, A. Yang, D. Karaiskaj, M. L. W. Thewalt, E. E. Haller, J. W. Ager III, M. Cardona, H. Riemann, N. V. Abrosimov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.–J. Pohl. // Ibid. – 2009. – V. 79. – P. 205210–1–7.

6. Ковалев, И. Д. Измерение изотопного состава изотопнообогащенного кремния и его летучих соединений методом лазерной масс-спектрометрии / И. Д. Ковалев, А. М. Потапов, А. Д. Буланов // Масс-спектрометрия. – 2004. – Т. 1, № 1. – С. 37—44.

7. **Baber**, **S. Ch.** Net and total shallow impurity analysis of silicon by low temperature fourier transform infrared spectroscopy / **S. Ch.** Baber // Thin solid films. – 1980. – V. 72, Iss. 1. – P. 201–210.

8. **Kolbesen, B. O. S**imultaneous determination of the total content of boron and phosphorus in high–resistivity silicon by IR spectroscopy at low temperature / B. O. Kolbesen // Appl. Phys. Lett. – 1975. – V. 27. – P. 353–355.

9. Lewis, R. A. Spectroscopic and piezospectroscopic studies of the energy states of boron in silicon / R. A. Lewis, P. Fisher, N.A. McLean // Australian J. Physics. – 1994. – V. 47. – P. 329–360.

10. **Zakel, S.** Infrared spectrometric measurement of impurities in highly enriched `Si28` / S. Zakel, S. Wundrack, H. Niemann, O. Rienitz, D. Schiel // Metrologia. – 2011. – V. 48. – P. 14—19.

11. ASTM Designation: F 1630-00 Standard test method for low temperature FT-IR analysis of single crystal silicon for III-V impurities. - P. 1-7.

РАССЛОЕНИЕ ТВЕРДОГО РАСТВОРА GeSi НА ПОДЛОЖКАХ GaAs И Si

Изучены электронные, оптические и механические свойства гетеросистем Ge_{1-x}Si_x на подложках GaAs (x = 0÷0,04) и Si (x = 0,75). Исследования проводили с помощью модуляционной спектроскопии электроотражения света для пленок и подложек, классической спектроскопии в области собственного поглощения пленок, измерения кривизны гетеросистем для определения знака и величины внутренних механических напряжений в них. Установлено изменение состава твердого раствора с образованием новых структур как в процессе осаждения пленок, так и под влиянием ү-облучения. Найдена возможность уменьшения внутренних механических напряжений и улучшения электронных параметров пленки и подложки на границе раздела, а также получения гетеросистем с твердым раствором без деформации изгиба.

Ключевые слова: гетероструктуры, твердые растворы GeSi, γ–облучение, элетроотражение, релаксация механических напряжений. © 2012 г. Е. Ф. Венгер, Л. А. Матвеева, П. Л. Нелюба Институт физики полупроводников им. В. Е. Лашкарева Национальной академии наук Украины

Введение

Интерес к твердым растворам GeSi вызван разнообразием их электронных, оптических и механических свойств, которые определяются составом твердого раствора и перспективностью использования для создания приборов, способных работать в условиях повышенной радиации. Гетеросистемы на основе твердых растворов германийкремний на разных подложках изучают с целью создания солнечных элементов, приемников излучения и других фотоэлектрических приборов. Наноструктурные гетеросистемы с твердым раствором $Ge_{0,25}Si_{0,75}$ на Si используют для производства сверхвысокочастотных транзисторов и фотоприемников. В процессе изготовления гетеросистем в них

возникают внутренние механические напряжения (**ВМН**). Это сопровождается генерацией структурных дефектов на границе раздела (**ГР**) пленка—подложка, приводит к изгибу гетеросистемы, ухудшает характеристики приборов и снижает их надежность [1].

Работа посвящена исследованию электронных, оптических и механических свойств гетеросистем с пленками твердого раствора $\text{Ge}_{1-x}\text{Si}_x$ на подложках GaAs и Si, выявлению особенностей их электронной зонной структуры, релаксации ВМН в зависимости от состава пленки и типа подложки, а также влияния на них γ -облучения. Цель работы — повышение качества гетеросистем за счет снижения уровня ВМН в них, а также выявление возможности получения гетеросистем без деформации