МОДЕЛИРОВАНИЕ ПРОЦЕССОВ И МАТЕРИАЛОВ

УДК 621.315.592+004.942

ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДЛЯ СОПРОВОЖДЕНИЯ ПРОЦЕССА ВЫРАЩИВАНИЯ КРИСТАЛЛОВ В МНОГОЗОННЫХ ТЕРМИЧЕСКИХ УСТАНОВКАХ

© 2012 г. М. М. Филиппов, А. И. Грибенюков, В. Е. Гинсар, Ю. В. Бабушкин* Институт мониторинга климатических и экологических систем СО РАН, *Томский политехнический университет

Разработана система управления технологическим процессом вырашивания кристаллов в многозонной термической установке Бриджмена с интегрированной математической моделью. Описана процедура настройки параметров математической модели. Для работы системы управления использована экспериментальная информация о распределении температуры в установке, а также информация о скорости роста кристалла и положении фронта кристаллизации, полученная расчетным путем. Последовательная коррекция уставок регуляторов многозонной термической установки в процессе вырашивания кристалла на основе расчетной информации направлена на снижение отклонений осевой скорости роста кристалла от скорости перемещения ростового контейнера. Представлены результаты вычислительных экспериментов по применению математической модели в составе системы автоматического управления.

Ключевые слова: многозонная термическая установка, рост кристаллов, фронт кристаллизации, скорость роста кристалла, метод Бриджмена.

Введение

Монокристаллы нелинейнооптических материалов являются основной элементной базой при создании источников излучения высокой интенсивности, предназначенных для систем дистанционного мониторинга природных и техногенных объектов. Например, монокристаллы соединения $ZnGeP_2$ относятся к наиболее эффективным материалам для преобразования оптического излучения в терагерцовую область спектра частот.

В настоящее время достигнуты значительные успехи в получении монокристаллов различных материалов, однако потребности разработчиков электронной аппаратуры и оптических систем постоянно стимулируют ужесточение требований к геометрическим размерам и качеству выращиваемых кристаллов [1]. Экспериментальные исследования показали [2, 3], что в кристаллах больших размеров, выращенных методом Бриджмена, часто наблюдается пространственная неоднородность свойств, которая в первую очередь

определяется составом, а при фиксированном составе существенно зависит от скорости роста и формы фронта кристаллизации [4]. Например, локальные осевые неоднородности кристаллической структуры связаны с отклонениями мгновенной скорости роста кристалла от скорости перемещения ростового контейнера, а радиальные неоднородности определяются формой фронта кристаллизации.

Проблема поиска режимов функционирования многозонной термической установки (МТУ), обеспечивающих условия, благоприятно влияющие на качество выращиваемых кристаллов, заключается в том, что в настоящее время нет технических средств контроля и управления ни фактической скоростью роста кристалла, ни формой фронта кристаллизации непосредственно в процессе выращивания кристалла по методу Бриджмена. С другой стороны, появились эффективные средства математического моделирования мультифизических процессов в сложных с геометрической точки зрения конструкциях. Поэтому представляется перспективным применение методов и средств математического моделирования для получения дополнительной информации при сопровождении процесса выращивания кристаллов в МТУ и ее использование в целях улучшения качества получаемых образцов.

Цель работы — исследование возможности применения методов математического моделирования при создании условий контролируемого роста кристаллов больших размеров в МТУ методом Бриджмена.

Описание многозонной термической установки

МТУ состоит из кольцеобразных нагревательных модулей и теплоизолирующих прокладок, установленных поочередно друг на друга и скрепленных внешним каркасом. Каждый модуль оснащен резистивным нагревательным элементом и датчиками температуры.

В рабочем объеме установки, представляющем собою полый цилиндр диаметром ~6 см и высотой, равной высоте установки, реализовано осевое распределение температуры, состоящее из трех зон: низкотемпературной (М18–М23), высокотемпературной (М1–М10) и градиентной (М11–М17) (рис. 1).

Физико-химические свойства ZnGeP₂, в частности его диссоциация при высоких температурах (>1300 К), обуславливают использование герметичных ростовых контейнеров для выращивания кристаллов.

Технологический процесс выращивания кристалла состоит из трех режимов: разогрев, кристаллизация и охлаждение, каждый из которых определяется длительностью, распределением уставок регуляторов мощности нагревателей установки $T^*(i), i = 1, N$ (где N — количество нагревательных элементов) и скоростью перемещения ростового контейнера V. Совокупность этих параметров для всех режимов составляет программу технологического процесса выращивания кристаллов. Длительность режима кристаллизации t и скорость перемещения ростового контейнера задаются из условий выращивания конкретного вещества. Время разогрева МТУ обычно определяется максимально допустимой скоростью нагрева, а длительность охлаждения максимально допустимой скоростью охлаждения установки и выросшего кристалла. В режиме кристаллизации ростовой контейнер, в котором расположено расплавленное рабочее вещество, медленно (~0,5—1 мм/ч) перемещается из высокотемпературной зоны в низкотемпературную. Расплав, проходя через точку кристаллизации, превращается в кристалл.

Пример программы технологического процесса выращивания монокристалла ZnGeP₂ методом Бриджмена в рассматриваемой МТУ приведен в табл. 1. Распределение уставок (в рассматриваемом случае — желаемых значений температуры) регуляторов мощности нагревателей $T^*(i)$ для каждого режима определяется в процессе калибровки термической установки при формировании в рабочем объеме МТУ необходимого температурного поля.

Описание системы управления многозонной термической установкой

Схема системы управления процессом выращивания кристаллов в МТУ на основе двух информационных потоков (экспериментально измеряемых данных и результатов моделирования) представлена на рис. 2.

Рис. 1. Схема осевого распределения температуры (а) и фрагмент рабочего объема термической установки (б): 1 — ампула; 2 — паровая фаза над расплавом кристаллизуемого вещества; 3 — тигель; 4 — рабочее вещество (расплав); 5 — затравочный кристалл; 6 — подставка ростового контейнера; 7 — теплоизолятор; М1–М23 — нагревательные модули

Таблица 1

Программа процесса выращивания монокристалла ZnGeP₂

	Режим						
Параметр	Старт	Разогрев	Кристал-	Охлаж-			
	1		лизация	дение			
t, мин	-	1200	21600	1200			
$T^*(1), { m K}$	293	1323	1323	293			
$T^*(2), \mathbb{K}$	293	1303	1303	293			
T*(23), K	293	1283	1283	293			
V, мм/ч	0	0	0,5	0			

Контроллер МТУ содержит модули ввода-вывода необходимой информации и предназначен для управления термической установкой. Тепловые мощности нагревательных модулей управляются пропорционально-интегральнодифференциальными регуляторами контроллера.

ПЭВМ используется для формирования законов управления технологическим процессом выращивания кристалла, моделирования, обработки, хранения и визуализации экспериментальных и расчетных данных. Имитационная модель, получая на вход такие же управляющие сигналы, что и МТУ, должна давать расчетную информацию о температурном поле термической

установки, положении и форме фронта кристаллизации, осевой скорости роста кристалла.

В качестве экспериментальной информации используют следующие величины:

– вектор температур $T^{\circ}(i)$ ($i = \overline{1, N}$, N — количество датчиков температуры), К;

 – положение ростового контейнера относительно термической установки *h*, м.

Как правило, вектор температур делится на две части. В первую часть входят $T^{9}(i)$ ($i = \overline{1,S}$), где S количество датчиков температуры, используемых для управления температурным полем установки. Во вторую часть $T^{9}(i)$ ($i = \overline{S} + 1, \overline{N}$) входят показания контрольных датчиков температуры, установленных на поверхности рабочего объема установки в области образования кристалла.

Для определения прогнозируемой скорости роста кристалла и формы фронта кристаллизации математическая модель должна обладать следующими свойствами:

 – учет не только наличия, но и перемещения ростового контейнера внутри рабочего объема;

 возможность одновременного получения температурного поля в МТУ и ростовом контейнере;

 – учет изменения относительных объемов и теплофизических свойств кристалла и расплава.

Математическая модель тепловых процессов для сопровождения процесса выращивания кристаллов

Для сопровождения процесса выращивания кристаллов разработаны геометрическая и математическая модели МТУ. Геометрическая модель максимально учитывает особенности конструктивных элементов МТУ и ростового контейнера, в том числе его перемещение. Математическая модель основана на классических представлениях о тепловых процессах, имеющих место при выращивании кристаллов с учетом изменений в рабочем объеме, связанных с

Рис. 2. Структурная схема системы управления экспериментальной установкой: ПЭВМ — персональная электронно-вычислительная машина; T^* — уставки регуляторов мощности; V — скорость перемещения ростового контейнера; h_0, h — начальное и текущее положение ростового контейнера соответственно; U — управления тепловыми мощностями нагревателей; T^3 , T(r, z, t) — измеряемое и расчетное распределения температуры; $h_{\rm kp}$ — расчетная оценка положения фронта кристаллизации; $V_{\rm kp}$ — расчетная осевая скорость роста кристалла

перемещением ростового контейнера, и относительных долей кристалла и расплава.

В силу азимутальной симметрии тепловые процессы в элементах установки и ростового контейнера описываются двухмерным уравнением теплопроводности:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\lambda\frac{\partial T}{\partial r}\right) + \frac{\partial}{\partial z}\left(\lambda\frac{\partial T}{\partial z}\right) + Q_V = c\rho\frac{\partial T}{\partial t},\qquad(1)$$

где с — удельная теплоемкость, Дж/(кг · К); λ — коэффициент теплопроводности материала, Вт/(м · К); T — температура, К; Q_v — удельная мощность тепловыделения, Вт/м³; ρ — плотность, кг/м³;

Граничные условия запишем в следующем виде.

1. На внешней поверхности термической установки имеем

$$-\lambda \frac{\partial T}{\partial n}\Big|_{r} = \alpha \Big(T_{r} - T_{0}\Big) + \varepsilon \sigma \Big(T_{r}^{4} - T_{0}^{4}\Big), \qquad (2)$$

где α — коэффициент теплоотдачи, Вт/(м² · К); є приведенная степень черноты; σ — постоянная Стефана–Больцмана, Вт/(м² · К⁴); *T*₀ — температура окружающей среды, К, *r* — радиус внешней поверхности установки.

2. На внутренних границах элементов конструкции как МТУ, так и ростового контейнера температура и тепловые потоки непрерывны:

$$\left. \lambda \frac{\partial T}{\partial n} \right|_{+} = \lambda \frac{\partial T}{\partial n} \right|_{-}; \quad T|_{+} = T|_{-}.$$
(3)

3. Теплообмен между ростовым контейнером и поверхностью рабочего объема МТУ можно описать как

$$\lambda \frac{\partial T}{\partial r}\Big|_{r_1} = \varepsilon_{\rm p} \sigma \Big(T_{r_2}^4 - T_{r_1}^4 \Big), \tag{4}$$

где r_1, r_2 — радиусы ростового контейнера и рабочего объема установки соответственно, м; ε_p — приведенная степень черноты системы «ростовой контейнер — рабочая поверхность МТУ»; 4. Вдоль оси *r* = 0 — условие осевой симметрии

$$\left. \frac{\partial T}{\partial r} \right|_{r=0} = 0. \tag{5}$$

В качестве начального условия принято, что

$$T(0) = T_0 = 293 \text{ K.}$$
 (6)

Удельная мощность тепловыделения в уравнении (1) не равна нулю только в управляемых нагревательных элементах МТУ. В остальных элементах установки и ростового контейнера она принимается равной нулю.

Перемещение ростового контейнера в рабочем объеме МТУ описывается выражением

$$h = h_0 - V(t - t_0), \tag{7}$$

где t_0 — начало режима кристаллизации; h_0 — начальное положение ростового контейнера.

Положение и форма поверхности, разделяющей кристалл и расплав (фронт кристаллизации), определяются изотермой кристаллизации. Предположим, что вблизи фронта кристаллизации существует переходная зона с линейной зависимостью теплофизических свойств рабочего вещества от кристалла до расплава. В связи с малой скоростью перемещения ростового контейнера влиянием выделения скрытой теплоты кристаллизации на температурное поле можно пренебречь.

Математическая модель (1) и (7) с граничными условиями (2)–(5) и начальным условием (6) позволяет получить оценки распределения температур термической установки, включая те области, где фактическое измерение температур либо невозможно, либо технически сложно. На основании расчетных распределений оценивают форму и положение фронта кристаллизации, а также определяют прогнозные значения скорости роста кристалла в любые моменты времени процесса кристаллизации.

Настройка параметров математической модели

Настройку параметров математической модели проводят на основании данных, полученных на этапе изготовления (размеры, теплофизические свойства используемых материалов, состав рабочего вещества и т. д.) и в процессе экспериментов непосредственно на термической установке. Измерения реального осевого распределения температуры выполняют с использованием термопары платиновой группы с градуировкой ПП(S) с помощью прецизионного измерительного прибора ТЕРКОН. Перед измерением температуры в фиксированной точке термопару выдерживают в ней в течение 10 мин. Значения термоЭДС поступают на вход аналого-цифрового преобразователя измерительного прибора, а затем в компьютер, где проводится последующая обработка. Для исключения влияния случайных помех формируется массив из 60 значений температур, измеренных в этой точке за период, равный 1 мин. Для этого массива вычисляют среднее значение температуры, которое берется в качестве достоверного и используется в дальнейших расчетах.

Процедура настройки параметров математической модели состоит из двух этапов:

- создание расчетной схемы;

 настройка теплофизических параметров модели.

В расчетной схеме устанавливается положение ростового контейнера и высота области рабочего вещества в соответствии с реальными значениями. Структурная схема процесса настройки теплофизических параметров модели изображена на рис. 3.

Процедура настройки теплофизических параметров модели выглядит следующим образом. С помощью уставок регуляторов мощности \tilde{T}^* , полученных в процессе калибровки МТУ, в рабочем объеме установки и ее модели реализуются осевые распределения температуры $T^{3}(z)$ и T(z), значения которых в контрольных точках сравнивают между собой в блоке сравнения. Условием окончания процедуры настройки является достижение заданного значения *е* суммой квадратов отклонений температур в контрольных точках:

$$\min\sum_{i=1}^{M} \left(T_i^{\mathfrak{I}} - T_i\right)^2 \le e,\tag{8}$$

где *М* — количество контрольных точек; *е* — заданная величина рассогласования температур.

Если условие (8) не выполняется, то производится коррекция теплофизических параметров материалов и пересчитывается температурное поле модели. При коррекции теплофизических параметров необходимо отслеживать, чтобы они были физически реализуемы, а геометрия модели соответствовала моделируемой МТУ.

Алгоритм работы системы управления

Вычислительные эксперименты показали, что процессы, протекающие в рабочем объеме рассматриваемой установки (перемещение подставки и ростового контейнера, изменение относительных

Рис. 3. Структурная схема настройки теплофизических параметров модели

массовых долей кристалла и расплава в ростовом контейнере), вызывают изменения температурного поля в ростовом контейнере, которые и приводят к отклонениям скорости роста кристалла от скорости перемещения контейнера [5].

Благоприятными условиями, положительно влияющими на качество выращиваемого кристалла, считают реализацию плоской или выпуклой в сторону расплава формы фронта кристаллизации и приближение осевой скорости роста кристалла к скорости движения ростового контейнера.

Алгоритм работы системы управления с математической моделью МТУ, направленный на улучшение условий выращивания кристалла, состоит из следующих этапов.

1. Исходное состояние ($t = t_0$). В МТУ с ростовым контейнером в положении h_0 с помощью уставок регуляторов мощности \vec{T}^* реализуется температурное поле \vec{T}^3 , необходимое для проведения процесса выращивания кристалла (см. рис. 1). Аналогичные уставки поданы на регуляторы модели МТУ и рассчитано температурное поле T(r, z, t).

2. Режим кристаллизации разбивается на N интервалов продолжительностью Δt . Задается первый (i = 1) интервал режима кристаллизации.

3. Для момента времени окончания интервала $t_i = t_0 + i\Delta t$ рассчитывается положение ростового контейнера $h = h_0 - Vi\Delta t$. Расчетная схема модели корректируется в соответствии с новым положением ростового контейнера.

4. Рассчитывается температурное поле модели, соответствующее новому положению ростового контейнера. Оцениваются изменения температурного поля, отклонения осевой скорости роста кристалла $V_{\rm kp}$ от номинальной ($V - V_{\rm kp}$), положение и форма фронта кристаллизации.

5. Если расчетное положение фронта кристаллизации отличается от исходного, то делается вывод, что и в МТУ произойдет то же самое, поэтому с помощью алгоритма оценки тепловых мощностей установки [6] или вручную технолог на основании расчетной информации корректирует осевое распределение температуры модели МТУ. При достижении удовлетворительного результата технолог оценивает изменения уставок (ΔT_{ji}^* , $j = \overline{11,17}$) регуляторов, необходимые для коррекции температурного поля МТУ на *i*-том интервале (табл. 2).

6. Ростовой контейнер с заданной скоростью перемещается вниз. Уставки регуляторов градиентной зоны МТУ непрерывно изменяются, согласно формуле

$$T_{ji}^{*}(t) = T_{ji-1}^{*}(t) + \frac{\Delta T_{ji}^{*}}{\Delta t}(t - t_{i-1}), \ j = \overline{11,17}.$$

 По истечении времени ∆t задается новый шаг i = i + 1. Этапы 3-6 повторяются до завершения режима кристаллизации, после чего включается режим охлаждения установки. Разработанный алгоритм можно использовать как в режиме реального времени, корректируя этап процесса кристаллизации непосредственно при выращивании кристалла, так и при его подготовке, заранее рассчитывая необходимые коррекции уставок регуляторов нагревательных элементов. Недостатком второго случая является сложность учета реальных ситуаций (например, сбой питания, изменение условий теплоотдачи и т. п.), которые могут возникнуть в процессе выращивания кристалла.

Пример изменения значений уставок регуляторов градиентной зоны для интервалов в 1200 мин представлен в табл. 2.

Результаты вычислительных экспериментов

Практическая реализация математической модели осуществлена в программной среде COMSOL Multiphysics 3.5 [7]. Согласно принятой технологии, в COMSOL Multiphysics на первом этапе строится геометрическая модель МТУ в виде схемы, состоящей из наиболее важных конструктивных элементов. Для каждого из элементов указывается вид уравнения, описывающего происходящие в нем процессы, теплофизические свойства материалов, условия теплообмена в виде граничных условий, источники и мощность тепловыделения. Далее выбирается тип задачи (стационарная, нестационарная) и указывается среда решения задачи методом конечных элементов. Разбиение расчетной области на конечные элементы производится автоматически. В частности, для рассматриваемой задачи используется ~62000 элементов. Время расчета стационарного состояния составляет менее 1 мин. Оценка времени переходных процессов в МТУ при ступенчатом изменении тепловой мощности нагревателей составляет менее 30 мин.

Таблица 2

Уставка	Номер интервала								
	1	2	3		6		18		
$\Delta T^*(11)$	-0,3	-0,7	-0,7		0,1		2,7		
$\Delta T^*(12)$	-0,3	-0,8	-0,8		0,1		2,9		
$\Delta T^*(13)$	-0,4	-0,8	-0,9		0,1		3,0		
$\Delta T^*(14)$	-0,4	-0,9	-0,9		0,1		2,9		
$\Delta T^{*}(15)$	-0,4	-0,9	-0,9		0,1		2,9		
$\Delta T^*(16)$	-0,4	-0,8	-0,8		0,2		2,7		
$\Delta T^*(17)$	-0,4	-0,8	-0,8		0,1		2,5		
Примечание. Длительность каждого интервала состав-									
ляла 1200 мин.									

Коррекция значений уставок (ΔT^{*}, K) регуляторов мощности для интервалов этапа кристаллизации

Рис. 4. Результаты применения математической модели в составе САУ:

а — положение ростового контейнера; б — фрагмент МТУ;

1 — расплав; 2 — кристалл; 3 — подставка ростового контейнера; 4 — положение фронта кристаллизации без коррекции (штриховая линия); 5 — теплоизолирующие прокладки; М10–М19 — нагревательные модули

Результаты применения разработанного алгоритма с математической моделью, реализованной в пакете COMSOL Multiphysics и направленной на снижение отклонений осевой скорости роста кристалла от скорости перемещения ростового контейнера, приведены на рис. 4.

Из рис. 4 видно, что при моделировании процесса выращивания кристалла без коррекции температурного поля положение фронта кристаллизации существенно отклоняется от исходного состояния. Коррекция температурного поля в процессе кристаллизации позволяет значительно снизить отклонения осевой скорости роста кристалла от скорости движения ростового контейнера, что является благоприятным фактором и должно положительно влиять на

качество растущего кристалла. Следует отметить, что при обоих вариантах моделирования процесса выращивания кристалла форма фронта кристаллизации несколько раз инвертируется от вогнутой до выпуклой в сторону расплава.

Заключение

Использование математической модели в составе системы управления термической установкой дает принципиальную возможность стабилизировать положение фронта кристаллизации и приблизить осевую скорость роста кристалла к скорости перемещения ростового контейнера. Приближение фактической скорости роста кристалла к скорости перемещения ростового контейнера предложенным методом на реальной термической установке позволяет рассчитывать на повышение качества (улучшение пространственной однородности) выращиваемых монокристаллов ZnGeP₂.

Изложенный метод сопровождения процессов выращивания кристаллов по Бриджмену в настоящее время проходит апробацию в Институте мониторинга климатических и экологических систем СО РАН при получении монокристаллов ZnGeP₂.

Библиографический список

1. Грибенюков, А. И. Нелинейно-оптические кристаллы ZnGeP₂: ретроспективный анализ технологических исследований / А. И. Грибенюков // Оптика атмосферы и океана. – 2002. – Т. 15, № 1. - C. 71-80.

2. Verozubova, G. A. Growth and defect structure of ZnGeP₂ crystals / G. A. Verozubova, A. O. Okunev, A. I. Gribenyukov, A. Yu. Trofimiv, E. M. Trukhanov, A. V. Kolesnikov // J. Cryst. Growth. -2010. - V. 312, N 8. - P. 1122-1126.

3. Марков, А. В. Выращивание монокристаллов арсенида галлия с высоким структурным совершенством методом вертикально направленной кристаллизации / А.В. Марков // Изв. вузов. Материалы электрон. техники. - 2006. - № 6. - С. 16-19.

4. Глазов, В.М. Физико-химические основы легирования полупроводников / В. М. Глазов, В. С. Земсков. – М. : Наука, 1967. – 272 c.

5. Филиппов, М. М. Оценка динамики температурного поля в рабочем объеме вертикальной установки Бриджмена при продольно-осевом перемещении ростового контейнера в процессе выращивания кристаллов / М. М. Филиппов, Ю. В. Бабушкин, А. И. Грибенюков, В. Е. Гинсар // Изв. Томского политехн. ун-та. - 2009. - T. 315, № 2. - C. 104—109.

6. Филиппов, М. М. Алгоритм оценки мощностей нагревательных элементов в многозонной установке для выращивания кристаллов по Бриджмену / М. М. Филиппов, Ю. В. Бабушкин, А. И. Грибенюков, В. Е. Гинсар // Там же. – 2009. – Т. 315, № 2. – C. 110-112.

7. Официальный сайт COMSOL Multiphysics [Электронный pecypc]. — режим доступа: http://www.comsol.com/. — 07.05.2011.

31

* *