8

максимумов полос поглощения фосфора и бора в кремнии 29 Si и 30 Si относительно 28 Si.

Изучена форма полос поглощения примесей бора и фосфора при 278 и 275 см⁻¹ в образцах с разным изотопным составом. Установлена зависимость частот максимумов линий поглощения от средней атомной массы изотопов кремния.

Достигнуты пределы обнаружения для примесей бора, фосфора и мышьяка в изотопно-обогащенном кремнии ²⁸Si, ²⁹Si и ³⁰Si — $1 \cdot 10^{12}$, $4 \cdot 10^{11}$ и $1 \cdot 10^{12}$ ат/см³ соответственно.

Библиографический список

1. Девятых, Г. Г. Высокочистый монокристаллический моноизотопный кремний–28 для уточнения числа Авогадро / Г. Г. Девятых, А. Д. Буланов, А. В. Гусев, И. Д. Ковалев, В. А. Крылов, А. М. Потапов, П. Г. Сенников, С. А. Адамчик, В. А. Гавва, А. П. Котков, М. Ф. Чурбанов, Е. М. Дианов, А. К. Калитеевский, О. Н. Годисов, Х.-Й. Поль, П. Беккер, Х. Риман, Н. В. Абросимов // ДАН. – 2008. – Т. 421, № 1. – С. 61—64.

2. Гусев, А. В. Получение монокристаллического моноизотопного кремния-29 / А. В. Гусев, В. А. Гавва, Е. А. Козырев, А. М. Потапов, В. Г. Плотниченко //Неорган. материалы. – 2011. – Т. 47, № 7. – С. 773—776.

3. Cardona, M. Isotope effects on the optical spectra of semiconductors / M. Cardona, M. L. Thewalt // Rev. of Modern Phys. – 2005. – N77.– P. 1173–1224.

УДК 621.315.592

4. **Karaiskaj, D.** Dependence of the ionization energy of shallow donors and acceptors in silicon on the host isotopic mass / D. Karaiskaj, T. A. Meyer, M. L. W. Thewalt, M. Cardona // Phys. Rev. B. – 2003. – V. 68, N 7. – P. 121201–1–4.

5. **Steger, M.** Shallow impurity absorption spectroscopy in isotopically enriched silicon / M. Steger, A. Yang, D. Karaiskaj, M. L. W. Thewalt, E. E. Haller, J. W. Ager III, M. Cardona, H. Riemann, N. V. Abrosimov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.–J. Pohl. // Ibid. – 2009. – V. 79. – P. 205210–1–7.

6. Ковалев, И. Д. Измерение изотопного состава изотопнообогащенного кремния и его летучих соединений методом лазерной масс-спектрометрии / И. Д. Ковалев, А. М. Потапов, А. Д. Буланов // Масс-спектрометрия. – 2004. – Т. 1, № 1. – С. 37—44.

7. **Baber**, **S. Ch.** Net and total shallow impurity analysis of silicon by low temperature fourier transform infrared spectroscopy / **S. Ch.** Baber // Thin solid films. – 1980. – V. 72, Iss. 1. – P. 201–210.

8. **Kolbesen, B. O. S**imultaneous determination of the total content of boron and phosphorus in high–resistivity silicon by IR spectroscopy at low temperature / B. O. Kolbesen // Appl. Phys. Lett. – 1975. – V. 27. – P. 353–355.

9. Lewis, R. A. Spectroscopic and piezospectroscopic studies of the energy states of boron in silicon / R. A. Lewis, P. Fisher, N.A. McLean // Australian J. Physics. – 1994. – V. 47. – P. 329–360.

10. **Zakel, S.** Infrared spectrometric measurement of impurities in highly enriched `Si28` / S. Zakel, S. Wundrack, H. Niemann, O. Rienitz, D. Schiel // Metrologia. – 2011. – V. 48. – P. 14—19.

11. ASTM Designation: F 1630-00 Standard test method for low temperature FT-IR analysis of single crystal silicon for III-V impurities. - P. 1-7.

РАССЛОЕНИЕ ТВЕРДОГО РАСТВОРА GeSi НА ПОДЛОЖКАХ GaAs И Si

Изучены электронные, оптические и механические свойства гетеросистем Ge_{1-x}Si_x на подложках GaAs (x = 0÷0,04) и Si (x = 0,75). Исследования проводили с помощью модуляционной спектроскопии электроотражения света для пленок и подложек, классической спектроскопии в области собственного поглощения пленок, измерения кривизны гетеросистем для определения знака и величины внутренних механических напряжений в них. Установлено изменение состава твердого раствора с образованием новых структур как в процессе осаждения пленок, так и под влиянием ү-облучения. Найдена возможность уменьшения внутренних механических напряжений и улучшения электронных параметров пленки и подложки на границе раздела, а также получения гетеросистем с твердым раствором без деформации изгиба.

Ключевые слова: гетероструктуры, твердые растворы GeSi, γ–облучение, элетроотражение, релаксация механических напряжений. © 2012 г. Е. Ф. Венгер, Л. А. Матвеева, П. Л. Нелюба Институт физики полупроводников им. В. Е. Лашкарева Национальной академии наук Украины

Введение

Интерес к твердым растворам GeSi вызван разнообразием их электронных, оптических и механических свойств, которые определяются составом твердого раствора и перспективностью использования для создания приборов, способных работать в условиях повышенной радиации. Гетеросистемы на основе твердых растворов германийкремний на разных подложках изучают с целью создания солнечных элементов, приемников излучения и других фотоэлектрических приборов. Наноструктурные гетеросистемы с твердым раствором $Ge_{0,25}Si_{0,75}$ на Si используют для производства сверхвысокочастотных транзисторов и фотоприемников. В процессе изготовления гетеросистем в них

возникают внутренние механические напряжения (**ВМН**). Это сопровождается генерацией структурных дефектов на границе раздела (**ГР**) пленка—подложка, приводит к изгибу гетеросистемы, ухудшает характеристики приборов и снижает их надежность [1].

Работа посвящена исследованию электронных, оптических и механических свойств гетеросистем с пленками твердого раствора $\text{Ge}_{1-x}\text{Si}_x$ на подложках GaAs и Si, выявлению особенностей их электронной зонной структуры, релаксации ВМН в зависимости от состава пленки и типа подложки, а также влияния на них γ -облучения. Цель работы — повышение качества гетеросистем за счет снижения уровня ВМН в них, а также выявление возможности получения гетеросистем без деформации изгиба, которая усложняет фотолитографический процесс при изготовлении приборов.

Методика эксперимента

Гетеросистемы $\operatorname{Ge}_{1-x}\operatorname{Si}_x/\operatorname{GaAs}$ получены термическим осаждением в вакууме специально подготовленных сплавов $\text{Ge}_{1-x}\text{Si}_x$ с $x = 0 \div 4\%$ (ат.), а $\text{Ge}_{1-x}\text{Si}_x/\text{Si}$ (x = 0,75) — CVD-методом. В гетеросистемах на подложке GaAs толщина пленки составляла 0,1—2 мкм, на Si — 100 нм. Основным методом исследования выбрана модуляционная спектроскопия электроотражения (ЭО) света, так как возможность выделения полезного сигнала из бесструктурного фона сделала этот метод самым чувствительным к выявлению особенностей зонной структуры полупроводника, ее изменению под влиянием ВМН и внешних воздействий [2, 3]. Использовали также классическую спектроскопию поглощения света, измеряли профиль изгиба гетеросистем для определения знака и величины ВМН σ в пленке.

Измерения спектров ЭО проведены при комнатной температуре в стандартной трехэлектродной ячейке с платиновым противоэлектродом на частоте модуляции 1 кГц. Они записаны в спектральной области 1,3—3,5 эВ, которая включает прямые переходы E_1 для Ge, E_0 для GaAs и E_0' для Si. Электроли-

Рис. 1. Зависимости электронных параметров пленок в гетеросистемах Ge_{1-x}Si_x/GaAs от состава твердого раствора *x*: 1 – Γ; 2 – τ; 3 – Δ

Рис. 2. Зависимости электронных параметров границы раздела в гетеросистемах $Ge_{1-x}Si_x/GaAs$ от состава раствора x: $1 - \Gamma; 2 - \tau$

том служил водный 0,1N-раствор хлористого калия. Трехточечным методом Аспнеса [4] рассчитывали энергию прямых оптических переходов (ширину запрещенной зоны E_g), параметр столкновительного уширения спектра Г, время энергетической релаксации носителей заряда $\tau = \hbar/\Gamma$. Параметры Г и τ определяются рассеянием возбужденных светом носителей заряда на фононах, примесях и дефектах структуры, т. е. характеризуют структурное совершенство полупроводника. Изменение E_g в сравнении с ненапряженными образцами позволяло определить знак и величину ВМН как в пленке, так и в подложке.

Знак и величину ВМН о в пленке определяли также по изгибу гетеросистемы с использованием формулы Стоуни [5]

$$\sigma = Ed^{2}[6(1 - v)Rt]^{-1}, \tag{1}$$

где E и v — модуль Юнга и коэффициент Пуассона подложки; d — ее толщина; t — толщина пленки; R = $= m^2(8l)^{-1}$; l — стрела прогиба гетеросистемы; m хорда, соединяющая концы дуги окружности радиуса R. Напряжения в пленке сжимающие, если она находится на выпуклой стороне подложки. Профили изгиба гетеросистем записывали на профилографах M-252 и Talesurf.

Экспериментальные результаты

Пленки имели монокристаллическую структуру и дырочный тип проводимости. В спектрах поглощения пленок Ge на GaAs в области прямого перехода в центре зоны Бриллюэна при энергиях меньше $E_{\rm g}$ наблюдали экспоненциальный ход коэффициента поглощения k:

$$k = \exp\left(\frac{E_g - E}{\Delta}\right),\tag{2}$$

нехарактерный для кристаллов объемного германия. Характеристическая энергия Δ не зависела от температуры измерения в области 4—300 К. В пленках твердого раствора с увеличением x параметры Δ и Г, протяженность экспоненциального участка тоже возрастали. Добавка кремния к германию приводила к разупорядочению пленки и появлению хвостов плотности состояний в ее запрещенной зоне. Для подложки GaAs в области ГР параметр Г имел минимальное значение при x = 0,02. Величина τ для пленок уменьшалась с увеличением x, а для подложки она имела наибольшее значение при x = 0,02(рис. 1 и 2).

Результаты можно объяснить следующим образом. Несоответствие параметров решетки Ge и GaAs составляет 0,07 %, а коэффициенты их термического расширения совпадают в широкой температурной области (4,2—800 К). Небольшая добавка кремния к германию позволяет устранить в пленке напряжения несоответствия. Анализ профилограмм гетеросистем при разном значении x показал, что знак и величина изгиба, т. е. ВМН, зависят от состава пленки. При x < 0,02 пленка сжата (она находится на выпуклой стороне подложки), при x > 0,02 — растянута, а при x = 0,02 гетеросистема распрямилась, следовательно, $\sigma = 0$. Значение σ изменялось от $2 \cdot 10^8$ Па (x = 0) до $-2,2 \cdot 10^8$ Па (x = 0,04). Увеличение параметра Г и уменьшение τ с ростом x в пленке происходит вследствие разупорядочения ее структуры при добавлении Si в решетку Ge. В подложке GaAs при x = 0,02 генерация технологических дефектов на ГР минимальна, наблюдаются минимальное значение Г и максимальное τ вследствие отсутствия ВМН в гетеросистеме.

Результаты исследования ЭО пленок твердых растворов при послойном их утонении посредством анодного травления в электролитической ячейке показали, что состав пленок не меняется при x = 0,02 (спектр остается постоянным). При другом составе пленок их поверхность обогащалась германием (при x < 0,02) или кремнием (при x > 0,02), что следовало из энергетического положения сигнала ЭО от твердого раствора.

Гетеросистемы без ВМН более стабильны к γ -облучению. В Ge/GaAs (x = 0) сигнал ЭО от ГР сдвигался в область меньших энергий под влиянием облучения, что соответствует снижению уровня ВМН в подложке. Наблюдалось также упорядочение ГР в Ge—GaAs под действием γ -облучения. Спектр ЭО заметно сужался (рис. 3, *a*). При составе твердого раствора x = 0,02 спектральное положение пиков ЭО от подложки на ГР не изменяется (рис. 3, *б*). Таким образом, свойствами гетеросистем Ge_{1-x}Si_x/GaAs для перевода их в более равновесное состояние можно управлять, изменяя состав твердого раствора или используя радиационную обработку.

Для перевода гетеросистем с твердым раствором Ge_{0,25}Si_{0,75} на подложке Si в более равновесное состояние использовали облучение γ -квантами ⁶⁰Co. Сигнал ЭО измеряли одновременно от пленки и подложки. На рис. 4 приведены спектры ЭО наноструктур Ge_{0,25}Si_{0,75} до (*a*) и после (б) облучения. В отличие от Ge и GaAs, в Si E_g в центре зоны Бриллюэна не возрастает, а уменьшается при деформации сжатия [6].

С увеличением дозы γ-облучения ВМН в подложке плавно релаксировали. Это проявлялось в увеличении энергии перехода для подложки до значения 3,38 эВ, которое соответствует ненапряженной поверхности Si [7]. Следовательно, ВМН в гетеросистеме на ГР отсутствуют при больших дозах облучения. Отсутствие их в пленке при облучении гетеросистемы дозами (1,5—1,9) · 10⁷ Р подтверждается измерением их профиля до и после облучения. С ростом дозы облучения они постепенно распрямлялись. Результаты измерения электронных и механических параметров гетеросистемы Ge_{0.25}Si_{0.75} в зависимости от дозы облучения приведены в табл. 1 и 2 соответственно.

Из формы спектра, приведенного на рис. 4, следует, что до облучения гетеросистемы в спектрах ЭО регистрировали одиночные сигналы от пленки (2,7—3,2 эВ) и подложки (3,2—3,5 эВ). После облучения, кроме сигнала от подложки, появились дополнительные пики в энергетической области спектра, соответствующей пленке (2,6—3,2 эВ). С увеличением дозы облучения их количество возрастало. На рис. 5 видно четыре таких пика от пленки: 3,10 эВ (1),

Рис. 3. Спектры ЭО границы раздела в гетеросистеме Ge/ GaAs (a) и Ge_{0,98}Si_{0,02} (б) до (1) и после (2) γ–облучения дозой 10⁷ P

Рис. 4. Спектр ЭО исходной структуры Ge_{0.25}Si_{0.75}/Si

Таблица 1

Электронные параметры гетеросистемы $Ge_{0.25}Si_{0.75}/Si$ при разных дозах γ -облучения

Доза облуче- ния, 10 ⁶ Р	Г*, мэВ	$ au^*$, 10^{-14} c	$E_{ m gSi}$, мэВ	$\Delta E_{ m gSi},$ мэВ	
0	180	3,6	3,30	80	
10^{6}	152	4,3	3,33	50	
$5\cdot 10^6$	148	4,4	3,36	20	
$9\cdot 10^6$	134	4,9	3,37	10	
$1,5 \cdot 10^{7}$	130	5,0	3,38	0	
$1,9\cdot 10^7$	123	5,3	3,38	0	
*Для подложки.					

Таблица 2

Механические параметры гетеросистемы Ge_{0.25}Si_{0.75}/Si при разных дозах γ–облучения

Доза об- лучения, 10 ⁶ Р	σ _{ЭО} (подложка), 10 ⁸ Па	Радиус изгиба, м	Кривиз- на, м ⁻¹	σ _R (пленка), ГПа
0	5,3	20	0,050	1,53
10^{6}	3,3	25	0,040	1,22
$5\cdot 10^6$	1,3	40	0,025	0,76
$9\cdot 10^6$	0,7	100	0,010	0,30
$1,5\cdot 10^7$	0	8	0	0
$1,9\cdot 10^7$	0	~	0	0

Рис. 5. Спектр ЭО структуры Ge_{0,25}Si_{0,75}/Si после ее облучения $\gamma-$ квантами 60 Со дозой 1,9 \cdot 107 Р

2,94 эВ (2), 2,83 эВ (3) и 2,71 эВ (4). Отсутствие ВМН при такой дозе облучения в гетеросистеме позволило определить состав твердого раствора в пленке по энергетическому положению пиков в спектре ЭО в зависимости от x [8]. Этим значениям энергии оптических переходов соответствуют следующие значения x: 0,8 (1), 0,67 (2), 0,58 (3), и 0,48 (4). На основе этого было сделано заключение, что γ -облучение, начиная с дозы 1,5 \cdot 10⁷ Р, привело не только к уменьшению ВМН

в гетеросистеме и упорядочению вследствие этого ГР. Оно изменило также состав пленки по толщине (произошло ее расслоение). Атомы Si сместились к подложке кремния, а атомы Ge — к свободной поверхности пленки. Возрастание x на ГР способствовало лучшему согласованию пленки с подложкой, переходу гетеросистемы в более равновесное состояние за счет устранения ВМН, а также улучшению электронных параметров исходной гетеросистемы Ge_{0.25}Si_{0.75}/Si.

Заключение

Переход гетеросистем с пленками твердых растворов GeSi в более равновесное состояние как в процессе их получения, так и в результате радиационного воздействия на гетеросистемы сопровождается релаксацией внутренних механических напряжений и повышением качества границы раздела пленка—подложка. Установлено, что в гетеросистемах Ge_{1-x}Si_x/GaAs это происходит при добавлении в решетку германия 2 % (ат.) Si. Для других составов твердого раствора наблюдается ее расслоение: при x < 0.02 граница раздела обогащается кремнием, а при x > 002 он диффундирует к поверхности пленки.

В тонких пленках твердого раствора $Ge_{0,25}Si_{0,75}$ на Si граница раздела обогащается кремнием для уменьшения напряжений несоответствия в гетеросистеме. Выявлено, что расслоение пленки происходит не в процессе ее осаждения, а под действием γ -облучения вследствие радиационно-стимулированной диффузии атомов кремния к подложке при стремлении гетеросистемы к переходу в более равновесное состояние (самоорганизации).

Показана возможность изготовления гетеросистем с твердым раствором SiGe без деформации изгиба, которая обычно усложняет процесс фотолитографии при изготовлении приборов.

Библиографический список

1. Конакова, Р. В. Влияние однородности твердого раствора Ge_{1-x}Si_x на выход годных ЛПД-диодов / Р. В. Конакова, Л. А. Матвеева, Ю. А. Тхорик // Материалы VI координационного совещания по исследованию и применению сплавов кремний—германий – Тбилиси, 1986. – С. 84.

2. **Кардона, М.** Модуляционная спектроскопия / М. Кардона - М.: Мир, 1972. - С. 100.

 Тягай, В. А. Электроотражение света в полупроводниках / В. А. Тягай, О. В. Снитко – Киев: Наукова думка, 1990. – С. 174.

4. Aspnes, D. E. Third-derivate modulation spectroscopy with low-field electroreflectance / D. E. Aspnes // Surf. Sci. – 1973. – V. 28. – P. 418—442.

5. Гофман, Р. У. Физика тонких пленок / Р. У. Гофман – М. : Мир, 1968. – Т. III. – С. 239.

6. Панков, Ж. Оптические процессы в полупроводниках / Ж. Панков – М.: Мир, 1973. – Приложение II. – С. 436.

7. Holiney, R. Yu. Investigation of the undersurface damaged layers in silicon wafers / R. Yu. Holiney, L. A. Matveeva, E. F. Venger // Semiconductor phys., quantum electronics and optoelectronics. – 1999. – V. 2, N 4. – P. 10—12.

8. **Венгер, Е. Ф.** Оптические свойства и энергетический спектр гетеросистемы Si_xGe_{1-x}/GaAs / Е. Ф. Венгер, Л. А. Матвеева // Неорган. материалы. – 1997. – Т. 33, вып. 2. – С. 153—157.