УДК 621.315.592:621.793

О НАКОПЛЕНИИ ПРИМЕСИ В АДСОРБЦИОННОМ СЛОЕ В ПРОЦЕССЕ ЛЕГИРОВАНИЯ ПРИ МОЛЕКУЛЯРНО-ЛУЧЕВОЙ ЭПИТАКСИИ

© 2012 г. Ю. Ю. Эрвье Национальный исследовательский Томский государственный университет

Предложена модель захвата и поверхностной сегрегации примеси при легировании в условиях молекулярнолучевой эпитаксии. Сделано предположение, что встраивание примеси в поверхностный слой легируемого кристалла происходит как в результате блокирования атомов примеси в изломах на ступенях атомами основного вещества, так и путем обмена адсорбированных атомов примеси с атомами основного вещества в поверхностном слое. Поверхностная сегрегация рассмотрена как накопление примеси в адсорбционном слое вследствие «перескоков» адсорбированных атомов примеси через ступени и путем перехода атомов примеси из поверхностного слоя в адсорбционный слой. Показано, что увеличение пересыщения вблизи ступени при понижении температуры и увеличении скорости роста приводит к подавлению поверхностной сегрегации из-за более эффективного блокирования примеси в изломах. Образование двухмерных островков на террасах и формирование неравновесных изломов на краях островков приводит к частичному сбросу пересыщения и ослаблению влияния температуры и скорости роста на поверхностную сегрегацию. При интенсивном переходе атомов примеси из поверхностного слоя в адсорбционный слой имеет место очень резкое (суперэкспоненциальное) увеличение размытия профиля легирования с увеличением температуры роста. Это связано с экспоненциальной зависимостью вероятности «замуровывания» примеси в поверхностном слое движушейся ступенью от константы скорости перехода примеси из поверхностного слоя в адсорбционный слой. Модель воспроизводит характерные зависимости ширины переходной концентрационной области легирования от температуры и скорости роста, полученные в экспериментах по легированию кремния сурьмой.

Ключевые слова: эпитаксия, молекулярный пучок, легирование, поверхностная сегрегация, ступени, изломы, островки.

Введение

Благодаря характерным для молекулярно-лучевой эпитаксии (МЛЭ) низким температурам кристаллизации, позволяющим исключить десорбцию и диффузию примеси в объеме кристалла, и относительной простоте варьирования потоков основных и примесных атомов имеется принципиальная возможность получения сверхрезких концентрационных профилей легирования и δ-легированных слоев [1, 2]. Однако легирование полупроводников, как правило, сопровождается сильной поверхностной сегрегацией примеси, приводящей к существенному размытию профилей легирования. Термин «поверхностная сегрегация» в данном случае означает, что на поверхности образуется «резервуар» из частиц примеси, перемещающийся вместе с поверхностью растущего кристалла. Встраивание примеси в кристалл происходит не мгновенно, а по мере накопления примеси в резервуаре (в случае легирования путем соосаждения примеси и основного вещества) или по мере исчерпания резервуара (при δ–легировании).

Экспериментальные исследования поверхностной сегрегации при легировании кремния различными примесями [3—5] показали, что зависимость ширины переходной концентрационной области (ПКО) легирования Δ от температуры роста T имеет вид кривой с максимумом. Выделяют следующие основные режимы поверхностной сегрегации примеси. Низкотемпературный или кинетический режим характеризуется возрастающей зависимостью $\Delta(T) \sim$ $\sim \exp(-E_{\Delta}/k_{
m B}T)$, где E_{Δ} — характерная энергия активации (E_{Δ} > > 0); k_в — постоянная Больцмана. Близкий к максимуму участок убывающей зависимости $\Delta(T)$ соответствует так называемому режиму равновесной сегрегации примеси. Здесь $\Delta(T) \sim \exp(E_{segr}/$ /k_BT) с положительной энергией сегрегации E_{segr}. При более высоких температурах реализуется десорбционный режим, при котором $\Delta(T) \sim \exp(E_{\rm des}/k_{\rm B}T)$, где энергия активации десорбции $E_{\rm des} > E_{\rm segr}$ Следует отметить, что в экспериментах по легированию кремния сурьмой при низких температурах наблюдался переход от относительно плавного увеличения ширины ПКО с повышением температуры к очень резкому (суперэкспоненциальному) увеличению $\Delta(T)$ [6, 7]. В десорбционном режиме ширина ПКО увеличивается пропорционально скорости роста (потоку атомов основного вещества) F [8]. При относительно низких температурах, когда десорбцией примеси можно пренебречь, Δ уменьшается с увеличением F[3, 9], в частности при легировании кремния (поверхность (100)) фосфором и сурьмой $\Delta \sim F^{-1/2}$ [10].

Теоретические модели легирования используют различные представления о механизме поверхностной сегрегации примеси. В известной модели «двух состояний», предложенной в работе [3], полагали, что накопление примеси происходит в поверхностном слое.

Учитывали, что прохождение ступени над атомом примеси в поверхностном слое переводит его в приповерхностный слой, и считали, что атом примеси путем обмена с атомом основного вещества способен вернуться из приповерхностного слоя в энергетически более выгодное положение в поверхностном слое. При этом переход из поверхностного слоя в приповерхностный слой связан с преодолением дополнительного потенциального барьера. В относительно недавней модификации рассмотренной в работе [3] модели, предложенной авторами работы [11], дополнительно была учтена возможность ускоренного перехода примеси из приповерхностного слоя в поверхностный слой в локальной области за краем движущейся ступени. В этих моделях сильная поверхностная сегрегация имеет место, если возвращение примеси из приповерхностного слоя в поверхностный происходит за время, которое существенно меньше времени роста монослоя (МС).

Модели, предложенные в работах [3, 11], позволяют воспроизвести полученную в эксперименте немонотонную зависимость ширины ПКО от температуры, включая участок суперэкспоненциального увеличения Δ , наблюдавшийся в экспериментах по легированию кремния сурьмой [3, 6, 7]. Кроме того, из результатов работ [3, 11] следует убывающая зависимость ширины ПКО от скорости роста в области низких температур, что на качественном уровне согласуется с экспериментом. Однако лежащее в основе этих моделей предположение о том, что энергетически наиболее выгодным положением для примеси является положение в поверхностном слое, может быть неверным по отношению к ряду примесей. Так, результаты экспериментов [12] и квантовохимических расчетов [13—15] указывают на то, что наиболее выгодными положениями атомов и димеров Sb на поверхности Si(100) являются положения над поверхностным слоем кремния, т. е. положения адсорбции на данной поверхности.

Накопление примеси в адсорбционном слое в результате перескоков адсорбированных атомов (далее адатомов) примеси, плохо встраивающихся в кристалл, через движущиеся ступени рассматривали в работах [10, 16—18]. Разработанные на основе данного подхода модели воспроизводят переход от режима равновесной сегрегации примеси к десорбционному режиму и зависимость ширины ПКО от скорости роста при низкотемпературном легировании. Однако они не дают корректного описания немонотонной зависимости ширины ПКО от температуры. Исключением могут служить работы [17—19], где такую зависимость связывают с оттеснением адатомов примеси движущимися ступенями. Однако этот эффект существен лишь в случае медленной поверхностной диффузии примеси. Резкую (суперэкспоненциальную) зависимость $\Delta(T)$, характерную для легирования кремния сурьмой [3, 6, 7], нельзя описать в рамках моделей, предложенных в работах [10, 16—18].

Ниже предложено обобщение разработанных авторами ранее моделей легирования и поверхностной сегрегации при МЛЭ [17—19], позволяющее воспроизвести характерные особенности поведения ширины ПКО с изменением температуры и скорости роста при различных режимах легирования. Такое обобщение включает учет возможности возвращения примеси из поверхностного слоя в адсорбционный (процесс диффузионной релаксации) и учет особенностей захвата примеси ступенями при сильных отклонениях от равновесия.

Модель

Пусть миграция адатомов примеси по поверхности происходит достаточно интенсивно, так что примесь практически однородно распределена в адсорбционном слое. Допустим, что встраивание атома примеси в поверхностный слой происходит как на ступенях, за счет блокирования в изломах атомами основного вещества [20], так и путем непосредственного («вертикального») перехода из адсорбционного слоя в поверхностный. Следовательно, поверхностная сегрегация примеси связана как с перескоками адатомов примеси через ступени, так и с возвращением атомов примеси из поверхностного слоя в адсорбционный. В отличие от моделей [3, 11], полагаем, что атом примеси, оказавшийся в приповерхностном слое, с большой вероятностью встраивается в кристалл. Таким образом, считаем, что примесь накапливается в основном в адсорбционном, а не в поверхностном слое. Согласно модели, «вертикальный» переход адатома примеси в поверхностный слой происходит за счет прямого обмена с атомом основного вещества, а обратный переход в адсорбционный слой — путем непосредственного отрыва атома примеси, без участия адатома основного вещества. Рассмотрим легирование путем соосаждения примеси и основного вещества при росте по механизму перемещения прямолинейных вицинальных ступеней, удаленных друг от друга на одинаковое расстояние *l*. Полагаем, что относительная (в расчете на один центр адсорбции) концентрация адатомов примеси *c*₁ << 1.

При сделанных предположениях уравнение материального баланса для концентрации адатомов примеси имеет вид

$$\frac{\mathrm{d}c_1}{\mathrm{d}t} = J - (k_{\mathrm{des}} + K_{\mathrm{d}}F + k_{\mathrm{ex}})c_1(t) + k_{\mathrm{dex}}\overline{c}_{\mathrm{s}}(t), \qquad (1)$$

где J — поток адсорбирующихся атомов примеси; $\overline{c}_{\rm s} = \int_0^l c_{\rm s}(x,t) {\rm d}x/l$ — средняя концентрация примеси в поверхностном слое (здесь x — расстояние до набегающей ступени; $c_{\rm s}(x,t)$ — локальная концентрация примеси в поверхностном слое); $k_{\rm des}$, $k_{\rm ex}$ и $k_{\rm dex}$ — константы скоростей десорбции, перехода в поверхностный слой и перехода из поверхностного слоя в адсорбционный слой соответственно; $K_{\rm d}$ — коэффициПренебрегая латеральной миграцией атомов примеси в поверхностном слое, для локальной концентрации этих атомов можно записать уравнение

$$\frac{\partial c_{\rm s}(x,t)}{\partial t} = V \frac{\partial c_{\rm s}(x,t)}{\partial x} - k_{\rm dex} c_{\rm s}(x,t) + k_{\rm ex} c_{\rm 1}(t), \qquad (2)$$

где первое слагаемое в правой части уравнения представляет собой дрейфовый поток, возникающий вследствие перехода к системе координат, связанной со ступенью, движущейся со скоростью V (в отсутствие десорбции основного вещества V = Fl).

Обычно характерное время установления стационарного режима легирования гораздо больше времени роста MC 1/F, а время, требуемое для перевода атома примеси из поверхностного слоя в приповерхностный, не превышает 1/F. Поэтому переходы между состояниями примеси в адсорбционном слое и в поверхностном можно рассматривать в квазистационарном приближении, пренебрегая производной по времени в уравнении (2). Будем полагать, что концентрация примеси в поверхностном слое непосредственно за фронтом движущейся ступени равна концентрации примеси, захваченной изломом, т. е. $c_{\rm s}(l, t) = K_{\rm d} c_{\rm l}(t)$. В отсутствие миграции атомов примеси между поверхностным и приповерхностным слоями прохождение ступени над атомом примеси, находящимся в поверхностном слое, приводит к необратимому переходу данного атома в объем кристалла. В этом случае концентрация примеси, окончательно захваченной кристаллом, $c_{\rm d}(t)$ равна концентрации примеси в поверхностном слое перед краем набегающей ступени $c_s(0, t)$. В непрерывном пределе $c_d(t) =$ $= c_{\rm d}(z)$, где z = Ft — толщина легируемого слоя. Решение (с использованием квазистационарного приближения) уравнений (1) и (2) приводит к стандартной формуле $c_d(z) = c_d(1 - e^{-z/\Delta})$ [8]. При этом стационарная концентрация захваченной кристаллом примеси и ширина ПКО равны:

$$c_{\rm d} = \frac{K_{\rm d} e^{-k_{\rm dex}/F} + \frac{k_{\rm ex}}{k_{\rm dex}} \left(1 - e^{-k_{\rm dex}/F}\right)}{k_{\rm des} + K_{\rm d} F e^{-k_{\rm dex}/F} + \frac{k_{\rm ex}}{k_{\rm dex}} F \left(1 - e^{-k_{\rm dex}/F}\right)} J; \quad (3)$$

$$\Delta = \frac{F}{k_{\rm des} + K_{\rm d} F e^{-k_{\rm dex}/F} + \frac{k_{\rm ex}}{k_{\rm dex}} F \left(1 - e^{-k_{\rm dex}/F}\right)}.$$
 (4)

В отсутствие десорбции примеси ($k_{\rm des} = 0$) из выражения (3) следует $c_{\rm d} = J/F$, что соответствует полному захвату адсорбирующихся атомов примеси. Можно также показать, что в этом случае $\Delta = k_{\rm segr}$, где $k_{\text{segr}} = c_1/c_d$ — коэффициент поверхностной сегрегации примеси [3]. Кроме того, следует отметить, что выражение (4) можно использовать и для оценки степени размытия концентрационного профиля при δ -легировании [18].

Входящий в выражения (3) и (4) коэффициент захвата примеси изломом K_d представляет собой комбинацию элементарных частот присоединения и отрыва основных и примесных атомов, отражающую кооперативный характер процесса встраивания этих атомов в излом [20]. Согласно работе [20], K_d зависит не только от температуры, но и от пересыщения вблизи излома σ и, следовательно, от скорости роста *F*. Выражение для K_d можно представить в следующем виде [17]:

$$K_{\rm d} = \frac{(1+\sigma)e^{-E_{\rm eq}/k_{\rm B}T}}{1+\sigma e^{E_{\rm 1}/k_{\rm B}T} + \sigma(1+\sigma)e^{(E_2-E_{\rm eq})/k_{\rm B}T}},$$
(5)

где $E_{eq} = E_{AA}^{-} - E_{AA}^{+} + E_{AB}^{+} - E_{AB}^{-} + E_{BA}^{+} - E_{BA}^{-}$; $E_1 = E_{BA}^{-} - E_{AA}^{-}$; $E_2 = E_{AB}^{+} - E_{AA}^{-}$. Здесь $E_{\alpha\beta}^{\pm}$ — энергии активации элементарных актов присоединения «+» и отрыва «-». Индексы «*A*» и «*B*» относятся к основному веществу и примеси соответственно. Первый индекс указывает сорт атома, к которому присоединяется или от которого отрывается атом. Второй индекс обозначает сорт присоединяющегося или отрывающегося атома. Подробный анализ возможных, согласно формуле (5), зависимостей $K_{d}(\sigma)$ проведен в работе [17].

Зависимости ширины переходной концентрационной области от температуры и скорости роста

Эффект блокирования примеси в изломах. Фигурирующая в уравнениях (3) и (4) величина $e^{-k_{\text{dex}}/F}$ имеет смысл вероятности того, что атом примеси в поверхностном слое не успеет вернуться в адсорбционный слой за время роста МС, т. е. до встречи с набегающей ступенью. Если $k_{\rm dex} << F$ и $k_{\rm ex} << k_{\rm des} +$ + K_dF (например, из–за больших энергий активации E_{dex} и E_{ex}), то процессы «вертикального» обмена несущественны, и из уравнения (4) следует классическое выражение для ширины ПКО: $\Delta = F/(k_{des} + K_d F)$ [8]. При высоких температурах (малых F), когда пересыщение σ << 1, коэффициент захвата примеси изломом равен равновесному коэффициенту захвата: $\tilde{K}_{\rm d}=e^{-E_{\rm eq}/k_{\rm B}T}$. В этом случае при $k_{\rm des}>>\tilde{K}_{\rm d}F$ ширина ПКО уменьшается с увеличением Т и увеличивается с увеличением F (десорбционный режим поверхностной сегрегации), а при $k_{\rm des} << \ddot{K}_{\rm d} F$ ширина ПКО уменьшается с увеличением Т и не зависит от F (равновесный режим, при котором $E_{segr} = E_{eq}$).

Наблюдаемое в эксперименте при низких температурах увеличение Δ с увеличением T и уменьшение Δ с увеличением F возможно, если $E_1 = E_{BA}^- - E_{AA}^- < 0$, т. е. если примесь в изломе плохо блокируется

атомами основного вещества [17, 20]. Здесь при $\sigma^* > > \sigma >> 1$ (где $\sigma^* \approx e^{(E_{eq} - E_2)/2k_BT}$) из выражения (5) следует $K_d \approx \sigma e^{-E_{eq}/k_BT}$. Заметим, что скорость перемещения ступени $V = Fl = \theta_k V_k$, где θ_k — концентрация изломов на ступени и $V_k = \omega_{AA}^- \sigma$ — скорость перемещения излома ($\omega_{AA}^- = 2ve^{-E_{AA}/k_BT}$ — частота отрыва атома из излома на одну из соседних террас). Используя эти соотношения и полагая, что θ_k равна равновесной концентрации изломов: $\theta_k = \tilde{\theta}_k \approx 2e^{-\epsilon_k/k_BT}$ (ϵ_k — энергия формирования излома) [21], в отсутствие десорбции примеси имеем

$$\Delta \approx \frac{1}{\sigma} e^{E_{\rm eq}/k_{\rm B}T} \approx \frac{4\nu}{Fl} e^{-(E_{\rm AA}^- + \varepsilon_{\rm k} - E_{\rm eq})/k_{\rm B}T}.$$
 (6)

Согласно выражению (6), ширина ПКО уменьшается с увеличением скорости роста и увеличивается с повышением температуры, если $E_{AA}^- + \varepsilon_k > E_{eq}$ (данное неравенство выполняется при типичных значениях E_{AA}^- и E_{eq}), что на качественном уровне согласуется с результатами экспериментов по низкотемпературному легированию полупроводников рядом примесей. Такое поведение $\Delta(F, T)$ связано с тем, что увеличивающееся с ростом F и с уменьшением T пересыщение вблизи ступени способствует более эффективному блокированию примеси в изломах и уменьшению, таким образом, поверхностной сегрегации.

Диффузионная релаксация. Допустим теперь, что энергии активации $E_{\rm dex}$ и $E_{\rm ex}$ относительно невелики. Повышение температуры в области средних температур, когда $k_{\text{dex}} \sim F$, приводит к резкому уменьшению вероятности сохранения примеси в поверхностном слое и, следовательно, к резкому увеличению ширины ПКО при условии, что второе слагаемое(в числителе) в правой части выражения (4) превосходит как константу скорости десорбции, так и третье слагаемое. При достаточно высоких Т (когда $k_{\rm dex} >> F$) примесь с большой вероятностью покидает поверхностный слой до встречи со ступенью. Роль процессов встраивания в ступени в этом случае несущественна и $\Delta \approx F/(k_{des} + k_{ex}F/k_{dex})$. Если $k_{des} <<$ $<< \!k_{\rm ex} F\!/k_{\rm dex}$, то ширина ПКО уменьшается с увеличением температуры и не зависит от скорости роста, что соответствует равновесному режиму поверхностной сегрегации примеси (здесь $E_{segr} = E_{ex} - E_{dex}$). С повышением температуры данное неравенство меняется на противоположное, и $\Delta \approx F/k_{\rm des}$ — десорбционный режим поверхностной сегрегации.

На рис. 1, a представлены зависимости $\Delta(T)$, полученные из уравнения (4) с учетом выражения (5) для коэффициента захвата примеси $K_{\rm d}$ и выражения

$$\sigma = \frac{Fl}{\theta_{\rm k}\omega_{\rm AA}^-} = \frac{Fl}{4\nu} e^{(E_{\rm AA}^- + \varepsilon_{\rm k})/k_{\rm B}T} \tag{7}$$

для пересыщения вблизи излома, при следующих значениях параметров модели $E_{\rm ex} = 2,4$ эВ, $E_{\rm des} = 2,9$ эВ, $E_{\rm eq} = 0,6$ эВ, $E_1 = E_2 = -0,6$ эВ, $E_{\rm AA}^- = 1,5$ эВ,

 $\varepsilon_{\rm k} = 0,2$ эВ, l = 100, F = 1 МС/с. Предэкспоненциальный множитель v в частоте отрыва атома основного вещества полагали равным 10^{12} с⁻¹, а при расчете констант скоростей $k_{\rm des}$, $k_{\rm ex}$ и $k_{\rm dex}$ принимали v = 10^{10} с⁻¹. Как следует из рис. 1, *a*, при относительно небольшом значении энергии активации $E_{\rm dex}$ имеется участок суперэкспоненциальной зависимости $\Delta(T)$. Увеличение $E_{\rm dex}$ от 1,4 до 1,8 эВ приводит к исчезно-

работе E_{eq} по переводу атома примеси из адсорбционного слоя в торец ступени. Зависимость $\Delta(T)$ в этом случае совпадает с имеющей место в отсутствие диффузионной релаксации. Представленные на рис. 1, б зависимости коэффициента поверхностной сегрегации r_{segr} от температуры и скорости роста следуют из уравнения (4) с учетом выражений (5) и (7) при $k_{des} = 0$ и $E_{dex} =$ = 1,4 эВ (значения остальных параметров модели соответствуют использованным выше для зависи-

мостей Δ(T)). Следует отметить сходство этих за-

вению такого участка. Это обусловлено уменьшением разности $E_{\rm ex}$ – $E_{\rm dex}$, являющейся движущей силой

перехода примеси из поверхностного слоя в адсорбционный. При $E_{\rm dex} = 1,8$ эВ значение $E_{\rm ex} - E_{\rm dex}$ равно

Рис. 1. Зависимости ширины ПКО от температуры при различных значениях энергии активации перехода примеси из поверхностного слоя в адсорбционный слой (*a*) и зависимости коэффициента поверхностной сегрегации от температуры при различных значениях скорости роста (*б*): *a*: *1* - *E*_{dex} = 1,4 эB; *2* - 1,6 эB; *3* - 1,8 эB, переход отсутствует; *б*: *1* - 0,3 MC/c; *2* - 1; *3* - 3

висимостей с полученными в экспериментах [3] по легированию кремния сурьмой. В соответствии с экспериментом [3], увеличение скорости роста F приводит к увеличению температуры, при которой $r_{segr}(T)$ достигает максимума, и к некоторому уменьшению максимального значения этой величины. Однако увеличение F в области низких T ведет к более резкому, чем наблюдалось в работе [10], уменьшению r_{segr} , что связано с ограничениями модели роста по механизму перемещения вицинальных ступеней.

Поверхностная сегрегация примеси при росте по механизму образования 2D-островков

Изложенная модель захвата и поверхностной сегрегации примеси предполагает рост по механизму перемещения вицинальных ступеней, тогда как кинетический режим поверхностной сегрегации наблюдается, как правило, при температурах, характерных для роста за счет образования 2D-островков [22].

Захват и поверхностную сегрегацию примеси при росте по механизму образования 2D-островков изучали в рамках следующей модели. Рассматривали ансамбль одинаковых 2D-островков, имеющих форму дисков толщиной в 1 МС и растущих за счет атомов, адсорбирующихся в пределах ячеек радиуса ρ₀, содержащих островки. Радиус ячейки связан с концентрацией 2D-островков на исходной поверхности N соотношением $\rho_0 \sim N^{-1/2}$. Полагали, что к началу роста в пределах участка поверхности, приходящегося на один островок, находится N_0 адатомов примеси. Осаждение дополнительных адатомов и десорбцию не учитывали. Рассматривали случай одноуровневого роста, когда формирование кристаллических слоев происходит в результате периодического образования и слияния 2D-островков.

При сделанных предположениях количество адатомов примеси на открытом участке поверхности завершенного кристаллического слоя и количество адатомов примеси на поверхности 2D-островка, растущего в пределах ячейки радиуса ρ_0 , удовлетворяют уравнениям баланса $dN_1/dt = -G_{inc,1} - G_{cl}$ и $dN_2/dt = -G_{inc,2} - G_{cl}$, где $G_{inc,1}$ и $G_{inc,2}$ — потоки адатомов примеси, встраивающихся в ступень, ограничивающую 2D-островок, (в край 2D-островка) с нижней и верхней террас соответственно; G_{cl} — результирующий поток адатомов примеси с нижней террасы, пересекающих ступень без встраивания в изломы.

При выводе выражений для $G_{inc,1}$, $G_{inc,2}$ и G_{cl} принимали, что примесь однородно распределена в пределах открытого участка поверхности завершенного слоя и поверхности островка. Кроме того, считали, что потенциальные барьеры для присоединения адатома примеси к краю островка с ближайших позиций адсорбции на нижней и верхней террасах одинаковы. В этом случае

$$G_{\text{inc},1} = 2\pi\rho\beta_{\text{inc}}\frac{N_1}{S_0 - S}; \quad G_{\text{inc},2} = 2\pi\rho\beta_{\text{inc}}\frac{N_2}{S}$$

где ρ — радиус 2D-островка, S и S₀ — площадь островка и площадь ячейки соответственно. Поток адатомов примеси, пересекающих край островка, равен

$$G_{\rm cl} = 2\pi\rho\beta_{\rm p}\frac{N_1}{S_0 - S} - 2\pi\rho\beta_{\rm p}\frac{N_2}{S}$$

В приведенных выражениях β_{inc} и β_p — кинетические коэффициенты, характеризующие интенсивность встраивания адатомов примеси в край островка и интенсивность перескоков адатомов примеси через край островка без встраивания соответственно. Эти коэффициенты могут быть выражены через константы скоростей элементарных процессов на ступени с использованием предложенного в работе [23] метода вычисления коэффициентов встраивания и проницаемости ступени для атомов основного вещества. В случае примеси, легко отрывающейся от гладкого (без изломов) участка края островка, такие вычисления дают: $\beta_{\rm inc} = K_{\rm d} V/2$ и $\beta_{\rm p} = (k_{\rm AB}^+ - K_{\rm d} V/2)/2$. Здесь V — скорость перемещения края 2D-островка: $V = F \rho_0 / (2\sqrt{\theta})$, где $\theta = S/S_0 = Ft$ — степень покрытия поверхности. Тогда

$$\begin{aligned} \frac{\mathrm{d}N_1}{\mathrm{d}\theta} &= -\frac{\Lambda_+(\theta)}{1-\theta}N_1 + \frac{\Lambda_-(\theta)}{\theta}N_2;\\ \frac{\mathrm{d}N_2}{\mathrm{d}\theta} &= \frac{\Lambda_-(\theta)}{1-\theta}N_1 - \frac{\Lambda_+(\theta)}{\theta}N_2, \end{aligned} \tag{8}$$

где $\Lambda_{\pm}(\theta) = k_{AB}^+ \sqrt{\theta} / (F\rho_0) \pm K_d(\theta) / 4$. Здесь зависимость коэффициента захвата примеси K_d от θ связана с периодическим изменением длины ступеней, ограничивающих 2D-островки, и, следовательно, с периодическим изменением входящего в выражение (5) пересыщения вблизи края островка σ . Зависимость $\sigma(\theta)$ определяли с использованием соотношений $V = \theta_k \omega_{AA}^- \sigma = F\rho_0 / (2\sqrt{\theta})$. Рассматривали два механизма формирования изломов:

– за счет тепловых флуктуаций $\theta_{k} = \tilde{\theta}_{k};$

– за счет формирования одномерных островков вдоль края 2D-островка по механизму Воронкова [24] ($\theta_k=\tilde{\theta}_k\sqrt{1+\sigma}$).

Число адатомов примеси, встраивающихся в k-й кристаллический слой (нумерация от исходной поверхности) за единицу времени, равно $\mathrm{d}N_{\mathrm{inc},1}^{(k)}/\mathrm{d}t = G_{\mathrm{inc},1}^{(k)} + G_{\mathrm{inc},2}^{(k)}$. Данное соотношение можно представить как

$$\frac{\mathrm{d}N_{\mathrm{inc}}^{(k)}}{\mathrm{d}\theta} = \frac{K_{\mathrm{d}}(\theta)}{2} \left(\frac{N_1^{(k)}(\theta)}{1-\theta} + \frac{N_2^{(k)}(\theta)}{\theta} \right). \tag{9}$$

Полное количество адатомов примеси, встраивающихся в *k*-й кристаллический слой, находили путем численного интегрирования уравнения (9) совместно с уравнениями (8) и с учетом выражения (5) для $K_{\rm d}$ от момента появления 2D-островка k-го слоя до его слияния с соседними 2D-островками. Концентрацию примеси в k-м слое определяли как отношение количества встроившихся адатомов к площади участка. Полагали, что все адатомы примеси, находящиеся к моменту слияния островков на открытом участке поверхности завершенного слоя, переходят на поверхность островка, т. е. при слиянии 2D-островков происходит эффективное вытеснение примеси на поверхность завершающегося кристаллического слоя.

При численном интегрировании использовали те же значения параметров $E_{\rm eq}$, E_1 , E_2 , $E_{\rm AA}^-$, $\varepsilon_{\rm k}$ и V, что и в расчетах по формуле (4) в случае роста по механизму перемещения вицинальных ступеней. Размер участка определяли с использованием известного выражения для концентрации 2D-островков: $N = C_0 (F / D_A)^{1/3} = C_0 (F / v_A)^{1/3} e^{E_A/3k_{\rm B}T}$ [25] при $C_0 =$ = 0,25 и $E_A = 0,67$ эВ (энергия активации поверхностной диффузии Si на Si(100) [26]). Время появления 2D-островка *k*-го слоя полагали равным времени ожидания адсорбции двух атомов на поверхность участка: $t_c = 2/(\pi \rho^2 F)$.

Результаты численного интегрирования показали, что переход к росту по механизму образования 2D-островков приводит к ослаблению влияния температуры и скорости роста на ширину ПКО. Это обусловлено уменьшением среднего расстояния между ступенями (краями островков) с увеличением *F* и уменьшением *T* и, как следствие, уменьшением пересыщения вблизи ступени. Уменьшение пересыщения приводит к ослаблению эффекта блокирования примеси в изломах атомами основного вещества и, следовательно, к усилению поверхностной сегрегации примеси. Аналогичное влияние оказывает и появление неравновесных изломов на краях остров-

Рис. 2. Зависимости коэффициента поверхностной сегрегации от температуры при росте по механизму перемещения вицинальных ступеней (1) и при росте по механизму образования 2D-островков, без учета (2) и с учетом (3) формирования неравновесных изломов на крае островка:

«О», «**■**» — экспериментальные данные, полученные в работах [6] и [7] соответственно; штриховые линии — условное изображение поведения *r*_{segr}(*T*) при смене ме-ханизмов роста

ков. Если концентрация изломов θ_k равна равновесной концентрации $\tilde{\theta}_k$, то при относительно низкой температуре ($T = 320 \,^{\circ}$ C) $\Delta \sim F^{-0,8}$. При этом в случае плохо блокируемой подвижной примеси модель захвата примеси вицинальными ступенями дает $\Delta \sim F^{-1}$. Если изломы формируются за счет образования одномерных островков по механизму Воронкова [24], то $\Delta \sim F^{-0,55}$ (в случае вицинальных ступеней $\Delta \sim F^{-2/3}$). Зависимость $\Delta \sim F^{-0,55}$ находится в хорошем соответствии с зависимостями $\Delta \sim F^{-0,5}$, полученными в экспериментах [10] по легированию кремния (поверхность (100)) фосфором и сурьмой.

Переход к росту по механизму образования 2D-островков происходит в конечном температурном интервале при постепенном уменьшении (с понижением *T*) вклада процессов встраивания адатомов в вицинальные ступени в рост кристалла. Описание захвата примеси в таком переходном режиме роста является нетривиальной задачей. Однако ввиду относительной узости указанного температурного интервала, модели захвата примеси, разработанные отдельно для каждого механизма роста, в совокупности должны дать достаточно полное описание процесса легирования при различных условиях роста.

На рис. 2 представлены зависимости коэффициента сегрегации r_{segr} от температуры, следующие из модели захвата примеси вицинальными ступенями (с учетом диффузионной релаксации) и из модели захвата примеси при росте по механизму образования 2D-островков (с учетом и без учета формирования неравновесных изломов).

Зависимости получены при F = 1 нм/с (0,737 МС/с для Si(100)), $E_{\text{dex}} = 1,5$ эВ, $E_{\text{ex}} = 2,6$ эВ и $E_{\text{eq}} = 0,5$ эВ. Значения остальных параметров те же, что использовали в предыдущих численных расчетах. Следует отметить хорошее качественное и количественное соответствие верхней кривой (неравновесные изломы при низких T) с результатами экспериментов [6, 7] по легированию кремния сурьмой.

Заключение

Предложена теоретическая модель поверхностной сегрегации примеси при легировании в условиях молекулярно—лучевой эпитаксии, учитывающая особенности захвата примеси движущимися ступенями и возможность возвращения атомов примеси из поверхностного слоя в адсорбционный слой (процесс диффузионной релаксации).

Показано, что характерное для низкотемпературного режима легирования уменьшение ширины ПКО с уменьшением температуры и увеличением скорости роста может быть обусловлено увеличением пересыщения вблизи ступени и, как следствие, более эффективным захватом примеси ступенями (краями 2D-островков). Данный эффект должен быть существен для примесей, плохо блокируемых в изломах атомами основного вещества, когда энергия активации отрыва атома основного вещества из излома с примесью меньше, чем из «чистого» излома.

Учет процесса диффузионной релаксации позволяет воспроизвести наблюдаемую в эксперименте по легированию кремния сурьмой суперэкспоненциальную зависимость ширины ПКО от температуры. Такое резкое увеличение $\Delta(T)$ обусловлено тем, что вероятность «замуровывания» примеси в поверхностном слое движущейся ступенью экспоненциально зависит от константы скорости перехода примеси из поверхностного слоя в адсорбционный слой.

Согласно проведенным расчетам, переход от роста за счет движения вицинальных ступеней к росту по механизму образования 2D-островков приводит к ослаблению зависимостей ширины ПКО от температуры и скорости роста. Это связано с частичным сбросом пересыщения из-за появления дополнительных стоков для адатомов — ступеней, ограничивающих 2D-островки. Аналогичное влияние на зависимости $\Delta(T)$ и $\Delta(F)$ оказывает и образование неравновесных изломов на ступенях. Учет данных эффектов позволяет объяснить зависимости $\Delta(T)$ и $\Delta(F)$, полученные в экспериментах по низкотемпературному легированию кремния фосфором и сурьмой.

Библиографический список

1. **Bean, J. C.** Arbitrary doping profiles produced by Sb-doped Si MBE / J. C. Bean // Appl. Phys. Lett. – 1978. – V. 33. – P. 654– 656.

2. Gossmann, H.-J. Delta doping in silicon/ H.-J. Gossmann, E. F. Schubert // Crit. Rev. Sol. St. Mater. Sci. - 1993. - V. 18. -P. 1-67.

3. Jorke, H. Surface segregation of Sb on Si(100) during molecular beam epitaxy growth / H. Jorke // Surf. Sci. – 1988. – V. 193. – P. 569—578.

4. **Кузнецов, В. П.** О накоплении примеси на (001) поверхности слоев Si при автоэпитаксии в вакууме / В. П. Кузнецов, А. Ю. Андреев // Поверхность. Физ., хим., механика. – 1990. – № 3. – С. 49—52.

5. Nützel, J. F. Comparison of P and Sb as n-dopants for Si molecular beam epitaxy / J. F. Nützel, G. Abstreiter // J. Appl. Phys. - 1995. - V. 78. - P. 937-940.

6. Hobart, K. D. Surface segregation and structure of Sb-doped Si(100) films grown at low temperature by molecular beam epitaxy / K. D. Hobart, D. J. Godbey, M. E. Twigg, M. Fatemi, P. E. Thompson, D. S. Simons // Surf. Sci. – 1995. – V. 334. – P. 29–38.

7. **Yurasov, D. V.** Usage of antimony segregation for selective doping of Si in molecular beam epitaxy / D. V. Yurasov, M. N. Drozdov, A. V. Murel, M. V. Shaleev, N. D. Zakharov, A. V. Novikov // J. Appl. Phys. – 2011. – V. 109. – P. 113533(7).

8. **Iyer, S. S.** Sharp profiles with high and low doping levels in silicon grown by molecular beam epitaxy / S. S. Iyer, R. A. Metzger, F. A. Allen // J. Appl. Phys. -1981. - V. 52. - P. 5608—5612.

9. Андреев, А. Ю. Легирование фосфором слоев Si при эпитаксии на (001) Si из молекулярного пучка / А. Ю. Андреев, Н. В. Гудкова, В. П. Кузнецов, В. С. Красильников, Р. А. Рубцова, В. А. Толомасов // Изв. АН СССР. Сер. Неорганические материалы. – 1988. – Т. 24, № 9. – С. 1423—1425.

10. Nützel, J. F. Segregation and diffusion on semiconductor surfaces / J. F. Nützel, G. Abstreiter // Phys. Rev. B. – 1996. – V. 53. – P. 13551–13558.

11. Arnold, C. B. Unified kinetic model of dopant segregation during vapor-phase growth / C. B. Arnold, M. J. Aziz // Phys. Rev. B. – 2005. – V. 72. – P. 195419(17).

12. **Rogge, S.** Surface polymerization of epitaxial Sb wires on Si(001) / S. Rogge, R. H. Timmerman, P. M. L. O. Scholte, L. J. Geerligs, H. W. M. Salemink // Ibid. – 2000. – V. 62. – P. 15341—15344.

13. Ramamoorthy, M. Chemical trends in impurity incorporation into Si(100) / M. Ramamoorthy, E. L. Briggs, J. Bernholc // Phys. Rev. Lett. – 1988. – V. 81. – P. 1642—1645.

14. **Martínez–Guerra, E.** Adsorption of Sb4 on Ge(001) and Si(001) surfaces: Scanning tunneling microscopy and first–principles calculations / E. Martínez–Guerra, G. Falkenberg, R. L. Johnson, N. Takeuchi // Phys. Rev. B. – 2006. – V. 73. – P. 075302(8).

15. Wang, J.-T. Two-stage rotation mechanism for group-V precursor dissociation on Si(001) / J.-T. Wang, C. Chen, E. G. Wang, D.-S. Wang, H. Mizuseki, Y. Kawazoe // Phys. Rev. Lett. – 2006. – V. 97. – P. 046103(4).

16. Andrieu, S. Surface segregation mechanism during twodimensional epitaxial growth: the case of dopants in Si and GaAs molecular-beam epitaxy / S. Andrieu, F. A. d'Avitaya, J. C. Pfister // J. Appl. Phys. – 1989. – V. 65. – P. 2681—2687.

17. Hervieu, Yu. Yu. Surface processes of impurity incorporation during MBE growth / Yu. Yu. Hervieu, M. P. Ruzaikin // Surf. Sci. – 1998. – V. 408. – P. 57–71.

18. Filimonov, S. N. On the kinetics of delta-doping during MBE / S. N. Filimonov, Yu. Yu. Hervieu // Phys. Low-Dim. Struct. – 1998. – N 7/8. – P. 91—100.

19. Filimonov, S. N. The dopant incorporation and surface segregation during 2D islands growth in MBE: A computer simulation study / S. N. Filimonov, Yu. Yu. Hervieu // Phys. Low–Dim. Struct. – 1998. – N 9/10. – P. 141–151.

20. Воронков, В. В. Захват примеси при движении элементарной ступени / В. В. Воронков, А. А. Чернов // Кристаллография. – 1967. – Т. 12, вып. 2. – С. 222—229.

21. **Бартон, В.** Рост кристаллов и равновесная структура их поверхностей / В. Бартон, Н. Кабрера, Ф. Франк // Элементарные процессы роста кристаллов / Под ред. Г. Г. Лемлейна, А. А. Чернова. – М. : ИЛ, 1959. – С. 10—109.

22. Jernigan, G. G. Temperature dependence of atomic scale morphology in Si homoepitaxy between 350 and 800 °C on Si(100) by molecular beam epitaxy / G. G. Jernigan, P. E. Thompson // J. Vac. Sci. Technol. A. - 2001. - V. 19. - P. 2307—2311.

23. Filimonov, S. N. Terrace-edge-kink model of atomic processes at the permeable steps / S. N. Filimonov, Yu. Yu. Hervieu // Surf. Sci. - 2004. - V. 553. - P. 133.

24. Воронков, В. В. Движение элементарной ступени посредством образования одномерных зародышей / В. В. Воронков // Кристаллография. – 1970. – Т. 15, вып. 1. – С. 1.

25. Venables, J. A. Nucleation and growth of thin films / J. A. Venables, G. D. T. Spiller, M. Hanbücken // Rep. Prog. Phys. – 1984. – V. 47. – P. 399–459.

26. Mo, Y. W. Activation energy for surface diffusion of Si on Si(001): A scanning-tunneling-microscopy study / Y. W. Mo, J. Kleiner, M. B. Webb, M. G. Lagally // Phys. Rev. Lett. - 1991. - V. 66. - P. 1998-2001.

* * *