Object–Relational Architecture of Information Support of the Multi–Circuit Calculation Multilayer Semiconductor Nanostructures
https://doi.org/10.17073/1609-3577-2014-3-189-193
Abstract
The article examines the object−relational approach to the creation of a database, designed to provide informational support to the multiscale computational scheme of multilayer semiconductor nanostructures. The MSNS computational scheme developed earlier by our group uses hierarchic representation of computational data obtained by various computational modules. Each layer of MSNS is treated separately. In contrast to well−known materials databases, which serve for storing and retrieving of information on existing structures and its properties, the database described in this paper is the central unit of MSNS computational scheme. The database provides data interchange between various computational units. In this paper we describe the modern approach to material database design. More specifically, data storage relational model which applies to solving resource−intensive and different−scale problems is proposed. Object−relational scheduler architecture is used in our work. It allows high−speed data exchange between various computational units of MSNS computational scheme. We introduce simple and user−friendly interface allowing criteria−based data retrieving as well as creation of input files for computational modules. These approaches can be applied in various branches of science, including the aviation and space industry, in particular in control systems of engineering (materials science) data.
About the Authors
K. K. AbgaryanRussian Federation
Сand. Sci. (Phys.−Math.), Associ- ate Professor of Moscow Aviation Institute (National Research Univer- sity), Head of the Section at the Dorodnitsyn Computing Center of RAN
P. A. Sechenykh
Russian Federation
Student of Moscow Aviation Institute (National Research University), Research Engineer at the Dorodnitsyn Computing Center of RAN
I. A. Supriadkina
Russian Federation
Graduate Student the Faculty of Physics, Moscow State University, Research Associate at the Dorodnitsyn Computing Center of RAN
References
1. MIT Material Properties Database: http://www.mit. edu/~6.777/matprops/
2. База данных по полупроводникам ФТИ им. А. Ф. Иоффе РАН: http://www.matprop.ru
3. Абгарян, К. К. Применение оптимизационных методов для моделирования многослойных полупроводниковых наносистем / К. К. Абгарян // Тр. Института системного анализа Российской академии наук. Динамика неоднородных систем. − 2010. − Т. 53, No 3. − С. 6—9.
4. Абгарян,К.К.Компьютерноемоделированиеустойчивых структур кристаллических материалов / К. К. Абгарян, В. Р. Хачатуров // Журнал вычисл. математики и математ. физики − 2009. − Т. 49, No 8. − C. 1517—1530.
5. Abgaryan, K. K. Application of optimization methods for modeling of semiconductor film nanostructures / K. K. Abgaryan // Internat. conf. «Optimization and applications» (Optima−2011). − Petrovac (Montenegro), 2011. − P. 3—4.
6. Программный комплекс VASP: http://cms.mpi.univie. ac.at/vasp/
7. Программный комплекс PWscf http://www.pwscf.org/
8. Blochl,P.E.Projectoraugmented−wavemethod/P.E.Blochl // Phys. Rev. B. − 1994. − V. 50. − P. 17953.
9. Kresse,G.Efficiencyofab−initiototalenergycalculationsfor metals and semiconductors using a plane−wave basis set / G. Kresse, J. Furthmüller // Comput. Mat. Sci. − 1996. − V. 6. −P. 15.
10. Date, C. J. Introduction to database systems / C. J. Date. − Addison−Wesley, 2005. − 1024 p.
11. Dentler, S. J. NHibernate 3.0 Cookbook / S. J.Dentler. − Packt Publishing, 2010. − 368 p.
12. Schenker, G. N. NHibernate 3 Beginner’s Guide / G. N. Schenker, A. Cure − Packt Publishing, 2011. − 328 p.
13. Хьюи, Дж. Неорганическая химия. Строение вещества и реакционная способность / Дж. Хьюи. − М. : Изд−во Химия, 1986.
Review
For citations:
Abgaryan K.K., Sechenykh P.A., Supriadkina I.A. Object–Relational Architecture of Information Support of the Multi–Circuit Calculation Multilayer Semiconductor Nanostructures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2014;(3):189-193. (In Russ.) https://doi.org/10.17073/1609-3577-2014-3-189-193