Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Interaction of Multicharge Impurities with Dislocations in Germanium Single Crystals

https://doi.org/10.17073/1609-3577-2014-3-211-216

Abstract

Germanium is a relevant object for research into the influence of dislocations on electronic properties of impurities and conversely the influence of impurities on electronic states of dislocations owing to high structural perfection of germanium single crystals and the abundant data available on properties of impurities and defects. We present the results of studies of radiationless and radiation recombination (by the DLTS and photoluminescence (PL) methods, respectively) of charge carriers in deep levels of plastically deformed germanium single crystals doped with multicharge copper or gold impurities by the diffusion method. The recombination parameters (position of the energy levels in the forbidden gap, the value and activation energy of capture cross−section and ionization entropy) of Cu−2/−3 and Au−1/−2 ions determined by DLTS are independent of dislocation density and in good agreement with those in as−grown samples, which is explained by their position outside the Reed cylinders. The parameters of Cu−2 and Au−1 electron capture account for the dependence of the DLTS signal amplitude on filling pulse frequency. After copper doping the methods of transmission electron microscopy (TEM) revealed no precipitates between the dislocations. The intensity of radiation recombination on dislocations at 4.2 K is significantly reduced by copper doping and restored by heating the samples at temperatures above 500 °С as a result of copper diffusion from the bulk toward the dislocations. The specific features of the luminescence spectra of the heated copper−doped samples within the temperature range 200—400 °C are likely to be due to the reactions of the impurities accumulated near the dislocations on cooling the copper−doped samples. 

About the Authors

S. A. Shevchenko
Institute of Solid State Physics Russian Academy of Sciences, 2 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432, Russia
Russian Federation

Dr. Sci. (Phys.−Math.), Senior Researcher  



A. N. Tereshchenko
Institute of Solid State Physics Russian Academy of Sciences, 2 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432, Russia
Russian Federation

Cand. Sci. (Phys.−Math.), Researcher 



A. A. Mazilkin
Institute of Solid State Physics Russian Academy of Sciences, 2 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432, Russia
Russian Federation

Cand. Sci. (Phys.−Math.), Senior Researcher 



References

1. Arguirov, T. Room temperature direct band−gap emission from an unstrained Ge p—i—n LED on Si / T. Arguirov, M. Kittler, Mi. Oehme, N. V. Abrosimov, E. Kasper, J. Schulze // Solid State Phenomena. − 2011. − V. 178/179. − P. 25—30.

2. Arguirov, T. Luminescence from germanium and germanium on silicon / T. Arguirov, M. Kittler, M. Oehme, N. V. Abrosimov, O. F. Vyvenko, E. Kasper, J. Schulze //Solid State Phenomena. − 2014. − V. 205/206. − P. 383—393.

3. Clayes,C.Germanium−basedtechnologies:Frommaterials to devices / C. Clayes, E. Simoen. − N. Y. : Elsevier, 2007. − P. 480.

4. Шевченко,С.А.ИсследованиеметодомDLTSпластически деформированного германия n−типа после легирования медью / С. А. Шевченко, А. И. Колюбакин // Физика и техника полупроводников. − 2013. − Т. 47, No 6. − С. 838—844.

5. Lang,D.V.Deep−leveltransientspectroscopy:anewmethod to characterize traps in semiconductors / D. V. Lang // J. Appl. Phys. − 1974. V. 45, N 7. − P. 3023—3032.

6. Omling, P. Electrical properties of dislocations and point defects in plastically deformed silicon / P. Omling, E. R. Weber, L. Montelius,H.Alexander,J.Michel//Phys.Rev.B.−1985.−V.32, N 20. − P. 6571—6581.

7. Clauws, P. DLTS of the third acceptor level of substitution copper in germanium / P. Clauws, G. Huylebroeck, E. Simoen, P. Vermaercke, F. De Smet, J. Vennik //Semiconductor Sci. Technol. − 1989. V. 4, N 11. − P. 910—914.

8. Woodbury,H.H.Tripleacceptorsingermanium/H.H.Woodbury, W. W. Tyler // Phys. Rev. − 1957. V. 105, N 1. − P. 84—91.

9. Dunlap,W.C.Goldasanacceptoringermanium/W.C.Dunlap // Phys. Rev. − 1955. − V. 97, N 3. − P. 614—629.

10. Simoen, E. DLTS of gold impurities in germanium / E. Simoen, P. Clauws, G. Huylebroeck, J. Vennik // Semiconductor Sci. Technol. − 1987. − V. 2, N 8. − P. 507—512.

11. Hirth, J. P. Theory of dislocations / J. P. Hirth, J. Lothe. − N. Y. : McGraw−Hill Publ. Co., 1968. − 780 p.

12. Izotov,A.N.Photoluminescenceandsplittingofdislocations in germanium / A. N. Izotov, A. I. Kolyubakin, S. A. Shevchenko, E. A. Steinman // Physica status solidi (a). − 1992. − V. 130, N 2. − P. 193−198.

13. Кравченко, В. Я. Спектры фотолюминесценции в пластически деформированных полупроводниках и электронные состояния на расщепленных дислокациях / В. Я. Кравченко // Журн. экспериментальной и теоретической физики. − 1995. − Т. 107, No 6. − С. 2048—2062.

14. Sauer, R. Dislocation−related photoluminescence in silicon / R. Sauer, C. Kisielowski−Kemmerich, H. Alexander // Phys. Rev. Lett. − 1986. − V. 57. − P. 1472—1475.

15. Шевченко, С. А. Фотолюминесценция в германии с квазиравновесной дислокационной структурой / С. А. Шевченко, А. Н. Терещенко // Физика твердого тела. − 2007. − Т. 49, No 1. − С. 27—31.


Review

For citations:


Shevchenko S.A., Tereshchenko A.N., Mazilkin A.A. Interaction of Multicharge Impurities with Dislocations in Germanium Single Crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2014;(3):211-216. (In Russ.) https://doi.org/10.17073/1609-3577-2014-3-211-216

Views: 921


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)