Trends in the Development of the Epitaxial Nitride Compounds Technology
https://doi.org/10.17073/1609-3577-2015-1-5-15
Abstract
The main trends in the development of technology for nitride heterostructures element base of microwave−technology and power electronics, as well as light−emitting diodes have been reviewed. It has been noted that most modern technological focus is the development of nitride heterostructures on silicon substrates. The basic problems of nitride compounds on silicon substrate and the ways of their solution have been discussed.
Some results of GaN/Si heterostructures technology development in «Elma−Malachit» JSC have been presented. The AlGaN/GaN/Si heterostructures have been grown by MOCVD. We show that early process stages such as Si−surface treatment and Al pre−deposition are of great importance for the growth of crack−free structures with good structural and surface quality. Meanwhile the surface curvature of the grown structures is influenced mainly by the composition of multilayered transition region between the AlN nucleation layer and the GaN layer. Transistors fabricated on AlGaN/GaN structures grown on Si substrates under optimized conditions demonstrated rather good static characteristics: Id,max = 800 mA/mm, Ubr > 120 V, gm = = 170 mS/mm.
For the further technology development experimental and technological work should be arranged in close coordination with analytical prediction and calculation of properties of the grown material with mathematical modeling methods. This approach will help enhance the efficiency of technology development and deepen scientific views on the processes responsible for the formation of properties of heterostructures.
About the Authors
A. A. ArendarenkoRussian Federation
Cand. Sci. (Eng.), Senior Researcher, Drector General
V. A. Oreshkin
Russian Federation
Head of Research and Production Laboratory
Yu. N. Sveshnikov
Russian Federation
Cand. Sci. (Eng.), Chief Researcher, Senior Researcher
I. N. Tsyplenkov
Russian Federation
Cand. Sci. (Eng.), Production Мanager, Senior Researcher
References
1. Okumura,H.Presentstatusandfutureprospectofwidegap semiconductor high−power devices/ H. Okumura // Jap. J. Appl. Phys. − 2006.− V. 45, N. 10A. − P. 7565—7586.
2. Anwar, A. Compound Semiconductor Markets: Current Status and Future. Report of Strategy Analytics. 2012. http://www. strategyanalytics.com
3. Azam, S. Comporizon of two GaN transistor technologies in droadband power amplifiers / S. Azam, C. Svensson , Q. Wahab, R. Jonsson // Microwave J. − 2010. − V. 53, N 4. − P. 184—192.
4. Sun,H.Ultrahigh−speedAlInN/GaNhighelectronmobility transistors grown on (111) high−resistivity silicon with FT = 143GHz / H.Sun,A.R.Alt,H.Benedickter,C.R.Bolognesi,E.Feltin,J.−F. Carlin,M.Gonschorek,N.Grandjean//Appl.Phys.Express.−2010.−V. 3. − P. 094101−1—094101−3.
5. Medjdoub, F. Effects of AlGaN back barrier on AlN/GaN− on−silicon high−electron−mobility transistors / F. Medjdoub, M. Zegaoui, B. Grimbert, N. Rolland, P.−A. Rolland // Appl. Phys. Express. − 2011. − V. 4. − P. 124101−1—124101−3.
6. Cheng, K. AlGaN/GaN/AlGaN double heterostructures grown on 200 mm silicon (111) substrates with high electron mobility / K. Cheng, H. Liang, M. Van Hove, K. Geens, B. De Jaeger, P. Srivastava, X. Kang, P. Favia, H. Bender, S. Decoutere, J. Dekoster, J. I. del Agua Bornique, S. W. Jun, H. Chung // Appl. Phys. Express − 2012. − V. 5. − P. 011002−1—011002−3.
7. Marcon, D. Excellent stability of GaN−on−Si high electron mobility transistors with 5 μmgate−drain spacing tested in off−state at a record drain voltage of 200 V and 200 °C / D. Marcon, M. Van Hove, D. Visalli, J. Derluyn, J. Das, F. Medjdoub, S. Degroote, M. Leys, K. Cheng, R. Mertens, M. Germain, G. Borghs // Jap. J. Appl. Phys. − 2010. − V. 49. − P. 04DF07−1—04DF07−4.
8. Application note AN−011: Substrates for GaN RF devices. − Nitronex corporation, 2008. http://www.richardsonrfpd.com/resources/RellDocuments/SYS_16/Nitronex_Substrates_for_GaN_ RF_Devices_App%20Notes.pdf
9. Ikeda,N.High−powerGaNHFETsonSisubstrate/N.Ikeda, J. Li, K. Kato, Sh. Kaya, T. Kazama, T. Kokawa, Y. Sato, M. Iwami,
10. T. Nomura, M. Masuda, S. Kato // Furukawa Rev. − 2008. − N 34. − P. 17—23.
11. Gajewski, D. A. HEMT MMIC technology on 100−mm 4H− SiC / D. A. Gajewski, S. Sheppard, T. McNulty, J. B. Barner, J. Milligan, J. Palmour // 26th Annual JEDEC ROCS Workshop. − Indian Wells (CA, USA), 2011. − P. 141—142.
12. Wallis, D. J. 2 dimensional electron gas uniformity of GaN HEMT layers on SiC / D. J. Wallis, P. J. Wright, D. E. J. Soley, L. Koker, M. J. Uren, T. Martin // J. Cryst. Growth. − 2012. − V. 338, N 1. − P. 125—128.
13. Krost, A. Blue optoelectronics in III—V Nitrides on Silicon / A. Krost, A. Dadgar // Acta Phisica Polonica A. − 2002. − V. 102, N 4−5. − P. 555—566.
14. Dadgar, A. Epitaxy of GaN LEDs on large substrates: Si or sapphire? / A. Dadgar, C. Hums, A. Diez, F. Schulze, J. Bläsing, A. Krost // Proc. of SPIE. − 2006. − V. 6355. − P. 63550R−1— 63550R−8.
15. Zhu, Y. High performance of GaN−based light emitting diodes grown on 4−in. Si(111) substrate / Y. Zhu, A. Watanabe, L. Lu, Z. Chen, T. Egawa // Jap. J. Appl. Phys. − 2011. − V. 50. − P. 04DG08− 1—04DG08−3.
16. Egawa, T. High performance InGaN LEDs on Si(111) substrates grown by MOCVD / T. Egawa, B. A. Bakar A. Shuhaimi // J. Phys. D: Appl. Phys. − 2010. − V. 43. − P. 354008 (8 pp).
17. GaN−on−Si. Report of Yole Development, 2014. http:// www.yole.fr
18. Briere, M. A. GaN based power devices: Cost−effective revolutionary performance / M. A. Briere // Power Electronics Europe. − 2008. − N 7. − P. 29—31
19. Baliga, B. J. Gallium nitride devices for power electronic applications / B. J. Baliga // Semicond. Sci. Technol. − 2013. − V. 28. − P. 074011.
20. Power GaN. Report of Yole Development, 2010. http:// www.yole.fr
21. Hageman, P. R. Growth of GaN epilayers on Si (111) substrates using multiple buffer layers / P. R. Hageman, S. Haffouz, A. Grzegorczk,V.Kirilyuk,P.K.Larsen//Mat.Res.Soc.Symp.Proc. − 2001. − V. 693. − P. 13.20.1—13.20.6.
22. Hsu,Y. P. Crack−free high−brightness InGaN/GaN LEDs on Si (111) with initial AlGaN buffer and two LT−Al interlayers / Y. P.Hsu,Y.P.Chang,W.S.Chen,J.K.Sheu,J.Y.Chu,C.T.Kuo// J. Electrochem. Soc. − 2007. − V. 154, N 3. − P. H191—H193.
23. Dadgar, A. Improving GaN−on−silicon properties for GaN device epitaxy / A. Dadgar, T. Hempel, J. Bläsing, O. Schulz, S. Fritze, J. Christen, A. Krost // Physica status solidi (c). − 2011. − V. 8, iss. 5. − P. 1503—1508.
24. Zhu,D.Low−costhigh−efficiencyGaNLEDonlarge−area Si substrate / D. Zhu, C. J. Humphreys // CS MANTECH Conf. − New Orleans (Louisiana, USA), 2013. − P. 269—272. http://www.csmantech. org/Digests/2013/papers/078.pdf
25. Cao,J.TheinfluenceoftheAlpre−depositionontheproperties of AlN buffer layer and GaN layer grown on Si (111) / J. Cao, Sh. Li, G. Fan, Y. Zhang, Y. Y. Zheng, J. Huang, J. Su // J. Crys. Growth. − 2010. − V. 312, N 14. − P. 2044—2048.
26. Арендаренко,А.А.Некоторыеособенностивыращивания гетероструктур AlGaN/GaN на подложках кремния для СВЧ− транзисторов / А. А. Арендаренко, И. Г. Ермошин, В. А. Орешкин, Ю. Н. Свешников, И. Н. Цыпленков, В. И. Гармаш, В. И. Егоркин, В. Е. Земляков., Л. Г. Литош // Сб. тез. 9−й Всероссийской конф. «Нитриды галлия, индия, алюминия — структуры и приборы». − М. : МГУ, 2013. − С. 78—79
27. Stevenson,R.Analystsaretippingtremendousgrowthfor thecompoundsemiconductorindustry/R.Stevenson//Compound Semiconductor. − 2012. − V. 18, N 3. − P. 14—19.
Review
For citations:
Arendarenko A.A., Oreshkin V.A., Sveshnikov Yu.N., Tsyplenkov I.N. Trends in the Development of the Epitaxial Nitride Compounds Technology. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(1):5-15. (In Russ.) https://doi.org/10.17073/1609-3577-2015-1-5-15