Nitride HEMTs VS Arsenides: the Ultimate Battle?
https://doi.org/10.17073/1609-3577-2015-1-16-22
Abstract
In this paper, we have studied the limitcapabilities of nitride and arsenide HEMTs and shown that the frequency limit of these devices has already been reached. The nature of these frequency constraints arise from device design rather than from semiconduc- tor properties. In particular we have established that the product tBCdg is the critical parameter which could not be minimized any further technologically. In summary it could be stated that nowadays InP pHEMTs offer the highest frequencies and GaN HEMTs on SiC substrate are the most powerful devices. In addition we have shown that the breakdown voltages and power density of nitride HEMTs at a given operating frequency are controlled by heterostructure barrier layer thickness, increasing with decrease of the latter. Therefore it is necessary to develop high efficiency nitride nanoheterostructures with tB less than 10 nm. In this respect the AlN/GaN heterostructures are beyond comparison due to the good performance of 2D gas and relative simplicity of growth process.
About the Authors
Yu. V. FedorovRussian Federation
Chief Designer, R&D head
S. V. Mikhaylovich
Russian Federation
Junior Researcher
References
1. Shinohara, K. Nano−gate transistor — world’s fastest InP−HEMT / K. Shinohara, T. Matsui // J. National Institute of Information and Communications Technol. − 2004. − V. 51, N 1/2. − P. 95—102.
2. Waldron, N. A self−fligned InGaAs HEMT architecture for logic applications / N. Waldron, D.−H. Kim, J. A. del Alamo // IEEE Transactions on Electron Devices. − 2010. − V. 57, N 1. − P. 297—304.
3. Kim, D.−H. fT = 688 GHz and fmax = 800 GHz in Lg = 40 nm In0.7Ga0.3As MHEMTs with gm_max > 2.7 mS/μm / D.−H. Kim, B. Brar,J.A.delAlamo//2011.IEEEInternationalElectronDevices Meeting. − 2011. − P. 13.6.1—13.6.4.
4. Lee, D. S. GaN high electron mobility transistors for sub− millimeter wave applications / D. S. Lee, Z. Liu, T. Palacios // Jap. J. Appl. Phys. − 2014. − V. 53, N 10. − P. 100212.
5. Huang, T. DC and RF performance of gate−last AlN/GaN MOSHEMTs on Si with regrown source/drain / T. Huang, Z. J. Liu, X. Zhu, J. Ma, X. Lu, K. M. Lau // IEEE Transactions on Electron Devices. − 2013. − V. 60, N 10. − P. 3019—3024.
6. Jessen, G. H. Short−channel effect limitations on high− frequency operation of AlGaN/GaN HEMTs for T−gate devices / G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. Via, A. Crespo, D. Langley, D. J. Denninghoff, M. Trejo, E. R. Heller // IEEE Transactions on Electron Devices. − 2007. − V. 54, N 10. − P. 2589—2597.
7. Shinohara, K. Scaling of GaN HEMTs and Schottky diodes forsubmillimeter−waveMMICapplications/K.Shinohara,D. C. Regan, Y. Tang, A. L. Corrion, D. F. Brown, J. C. Wong, J. F. Robinson, H. H. Fung, A. Schmitz, T. C. Oh, S. J. Kim, P. S. Chen, R. G. Nagele, A. D. Margomenos, M. Micovic // IEEE Transactions on Electron Devices. − 2013. − V. 60, N 10. − P. 2982—2996.
8. Egard, M. High transconductance self−aligned gate−last surface channel In0.53Ga0.47As MOSFET / M. Egard, L. Ohlsson, B. M. Borg, F. Lenrick, R. Wallenberg, L.−E. Wernersson, E. Lind // 2011. IEEE International Electron Devices Meeting (IEDM). − 2011. − P. 13.2.1—13.2.4.
9. Kim, T.−W. ETB−QW InAs MOSFET with scaled body for improved electrostatics / T.−W. Kim, D.−H. Kim, D.−H. Koh, R. J. W. Hill, R. T. P. Lee, M. H. Wong, T. Cunningham, J. A. del Alamo, S. K. Banerjee, S. Oktyabrsky, A. Greene, Y. Ohsawa, Y. Trickett, G. Nakamura, Q. Li, K. M. Lau, C. Hobbs, P. D. Kirsch, R. Jammy // 2012 IEEE International Electron Devices Meeting (IEDM). − 2012. − P. 32.3.1−32.3.4.
Review
For citations:
Fedorov Yu.V., Mikhaylovich S.V. Nitride HEMTs VS Arsenides: the Ultimate Battle? Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(1):16-22. (In Russ.) https://doi.org/10.17073/1609-3577-2015-1-16-22