Influence of the ab initio Calculation Parameters on Prediction of Energy of Point Defects in Silicon
https://doi.org/10.17073/1609-3577-2015-1-23-30
Abstract
Point defects play a key role in many of the microelectronics device technologies. Knowledge of the properties of point defects and characteristics of their behavior during radiative synthesis of microstructures for use in silicon devices allows one to optimize the
conditions of their production, improve their quality and improve the electronic properties. To a large extent this was due to the complexity of measuring the parameters of point defects. In this situation, of valuable help in studying the properties of point defects is numerical modeling, especially with the use of quantum mechanical methods based on density functional theory approach.
The paper describes a systematic study of the effect of various quantum−mechanical simulation approximations influence the calculated energy parameters of defects as applied to simple point defects in silicon. We have demonstrated that the choice of the form of the exchange−correlation functional has the strongest effect on the predicted defect formation energy, whereas the variation of the other considered approximations is of secondary importance for simulation predictions.
About the Authors
M. G. GanchenkovaRussian Federation
Сand. Sci. (Phys.−Math.), Senior Researcher
I. A. Supriadkina
Russian Federation
Graduate Student the Faculty of Physics, Moscow State University, Research Associate at the Dorodnitsyn Computing Center of RAN
K. K. Abgaryan
Russian Federation
Сand. Sci. (Phys.−Math.), Head of the Section
D. I. Bazhanov
Russian Federation
Сand. Sci. (Phys.−Math.)
I. V. Mutigullin
Russian Federation
Сand. Sci. (Phys.−Math.), Senior Researcher
V. A. Borodin
Russian Federation
Dr. Sci. (Phys.−Math.), Leading Researcher
References
1. Pelaz, L. Front−end process modeling in silicon / L. Pelaz, L. A.Marques, M.Aboy, P.López,I.Santos // Eur.Phys.J.B.−2009. − V. 72. − P. 323—359.
2. Kohn,W.Self−consistentequationsincludingexchangeand correlationeffects/W.Kohn,L.J.Sham//Phys.Rev.−1965.−V. 140. − P. A1133—A1138.
3. Perdew, J. P. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. / J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M.R.Pederson,D.J.Singh,C.Fiolhais//Phys.Rev.B.−1992.−V. 46. − P. 6671—6687.
4. Kresse, G. From ultrasoft pseudopotentials to the projector augmented−wave method / G. Kresse, D. Joubert // Phys. Rev. B. − 1999. − V. 59. − P. 1758—1775.
5. Vanderbilt, D. Soft self−consistent pseudopotentials in a generalized eigenvalue formalism / D. Vanderbilt // Phys. Rev. B. − 1990. − V. 41. − P. 7892—7895.
6. Probert, M. I. J. Improving the convergence of defect calculations in supercells: An ab initio study of the neutral silicon vacancy / M. I. J. Probert, M. C. Payne // Phys. Rev. B. − 2003. − V. 67. − P. 075204.
7. Corsetti, F. The silicon vacancy: insights from large−scale electronic structure calculations and maximally−localized Wannier functions / F. Corsetti, A. A. Mostofi // Phys. Rev. B. − 2011. − V. 84. − P. 035209.
8. Stillinger, F. H. Computer simulation of local order in condensed phases of silicon / F. H. Stillinger, T. A. Weber // Phys. Rev. B. − 1985. − V. 31. − P. 5262—5271.
9. Tersoff, J. Modeling solid−state chemistry: interatomic potentials for multicomponent systems / J. Tersoff // Phys. Rev. B. − 1989. − V. 39. − P. 5566—5568.
10. Justo, J. F. Interatomic potential for silicon defects and disordered phases / J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov, S. Yip // Phys. Rev. B. − 1998. − V. 58. − P. 253—2550.
11. Jelinek, B. Modified embedded atom method potential for Al, Si, Mg, Cu and Fe alloys / B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. G. Kim, G. J. Wagner, A. Moitra, M. I. Baskes // Phys. Rev. B. − 2012. − V. 85. − P. 245102.
12. Puska, M. J. Convergence of supercell calculations for point defects in semiconductors: vacancy in silicon / M. J. Puska, S. Poykko, M. Pesola, R. M. Nieminen // Phys. Rev. B. − 1998. − V. 58. − P. 1318—1325.
13. Dannefaer, S. Monovacancy Formation Enthalpy in Silicon / S. Dannefaer, P. Mascher, D. Kerr // Phys. Rev. Lett. − 1986. − V. 56. − P. 2195—2198.
14. Watkins, G. D. Defects and Their Structure in Non−metallic Solids / G. D. Watkins. − N. Y. : Plenum, 1976.
15. Goedecker, S. A Fourfold Coordinated Point Defect in Silicon / S. Goedecker, T. Deutsch, L. Billard // Phys. Rev. Lett. − 2002. − V. 88. − P. 235501.
16. Wright, A. F. Density−functional−theory calculations for the silicon vacancy / A. F. Wright // Phys. Rev. B. − 2006. − V. 74. − P. 165116.
17. Al−Mushadani, O. K. Free−energy calculations of intrinsic point defects in silicon / O. K. Al−Mushadani, R. J. Needs // Phys. Rev. B. − 2003. − V. 68. − P. 235205.
18. Watkins, G. D. Defects in Irradiated Silicon: Electron Paramagnetic Resonance of the Divacancy / G. D. Watkins, J. W. Corbett // Phys. Rev. − 1965. − V. 138. − P. A543—A555.
19. Pellegrino, P. Annealing kinetics of vacancy−related defects in low−dose MeV self−ion−implanted n−type silicon / P. Pellegrino,
20. P. Lévêque, J. Lalita, A. Hallén, C. Jagadish, B. G. Svensson // Phys. Rev B. − 2001. − V. 64. − P. 195211.
21. Song, E. Fully relaxed point defects in crystalline silicon / E. Song, E. G. Kim, Y. H. Lee, Y. G. Hwang // Phys. Rev. B. − 1993. − V. 48. − P. 1486—1489.
22. Pesola, M. Spin−density study of the silicon divacancy / M. Pesola, J. von Boehm, S. Pöykkö, R. M. Nieminen // Phys. Rev. B. − 1998. − V. 58. − P. 1106—1109.
23. Staab, T. E. M. Stability of large vacancy clusters in silicon / T. E. M. Staab, A. Sieck, M. Haugk, M. J. Puska, Th. Frauenheim, H. S. Leipner // Phys. Rev. B. − 2002. − V. 65. − P. 115210.
24. Svensson, B. G. Annealing of divacancy−related infrared absorption bandin boron−doped silicon / B. G. Svensson, K. Johnsson, D. X. Xu, J. H. Svensson, J. L. Lindstrom // Radiat. Eff. Def. Sol. − 1989. − V. 111. − P. 439—447.
25. Tang, M. Intrinsic point defects in crystalline silicon: Tight−binding molecular dynamics studiesof self−diffusion, interstitial−vacancy recombination and formation volumes / M. Tang, L. Colombo, J. Zhu, T. D. de la Rubia // Phys. Rev. B. − 1997. − V. 55. − P. 14279—14289.
26. Leung, W.−K. Calculations of Silicon Self−Interstitial Defects / W.−K. Leung, R. J. Needs, G. Rajagopal, S. Itoh, S. Ihara // Phys. Rev. Lett. − 1999. − V. 83. − P. 2351—2354.
27. Needs, R. J. First−principles calculations of self−interstitial defect structures and diffusion paths in silicon / R. J. Needs // J. Phys.: Condens. Matter. − 1999. − V. 11. − P. 10437—10450.
28. Mattsson,A.E.ElectronicsurfaceerrorintheSiinterstitial formation energy / A. E. Mattsson, R. R. Wixom, R. Armiento // Phys. Rev. B. − 2008. − V. 77. − P. 155211.
29. Centoni,S.A.First−principlescalculationofintrinsicdefect formation volumes in silicon / S. A. Centoni, B. Sadigh, G. H. Gilmer, T. J. Lenosky, T. D. de la Rubia, Ch. B. Musgrave // Phys. Rev. B. − 2005. − V. 72. − P. 195206.
Review
For citations:
Ganchenkova M.G., Supriadkina I.A., Abgaryan K.K., Bazhanov D.I., Mutigullin I.V., Borodin V.A. Influence of the ab initio Calculation Parameters on Prediction of Energy of Point Defects in Silicon. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(1):23-30. (In Russ.) https://doi.org/10.17073/1609-3577-2015-1-23-30