Numerical and Experimental Study of the Influence of Thermal Processes on the Shape of Solidification Front in Czochralski Model for Heptadecane and Gallium
https://doi.org/10.17073/1609-3577-2014-4-257-267
Abstract
Convective heat transfer and solidification have been studied using a simplified but unified simulation/experimental model of the Czochralsky method for two materials with melting points close to room temperature: heptadecane (low heat conductivity) and gallium (high heat conductivity). Due to the transparency of the heptadecane melt we have been able to visualize the melt flow patterns and the solidified structures in a laboratory experiment to provide the simulation model with source data. Based on calculations we have studied the parameters of melt flow patterns, heat flows on the cooled disc and the dependence of solidification front shape for both materials on convective heat transfer modes: thermogravity and mixed (i.e. with additional crystal rotation) convection.
About the Authors
N. A. VerezubRussian Federation
Senior Researcher, Cand. Sci. (Phys.−Math.)
A. I. Prostomolotov
Russian Federation
Leading Researcher, Dr. Sci. (Eng.)
V. S. Berdnikov
Russian Federation
Header of Laboratory, Dr. Sci. (Phys.−Math.)
V. A. Vinokurov
Russian Federation
Researcher, Cand. Sci. (Phys.−Math.)
References
1. Berdnikov V. S., Prostomolotov A. I., Verezuv N. A. The phenomenon of «cold plume» instability in Czochralski hydrodynamic model: Physical and numerical simulation. J. Cryst. Growth. 2014, vol. 401, pp. 106—110. http://dx.doi.org/10.1016/j.jcrysgro.2013.12.055
2. Ansys CFD. Lisence of IPMech RAS, no. 659778−23−Aug−2011.
3. Berdnikov V. S., Vinokourov V. V., Gaponov V. A., Markov V. A. Complex simulation of crystal pulling from the melt. Proc. Fourth Internat. Conf. «Single crystal growth and heat and mass transfer». Obninsk: SSC RF IPPE, 2001, vol. 1. Pp. 80—106.
4. Babichev A. P., Babushkina N. A., Bratkovskii A. M., Brodov M. E., Bystrov M. V., Vinogradov B. V., Vinokurova L. I., Gel’man E. B., Geppe A. P., Grigor’ev I. S., Gurtovoi K. G., Egorov V. S., Eletskii A. V., Zarembo L. K., Ivanov V. Yu., Ivashintseva V. L., Ignat’ev V. V., Imamov R. M., Inyushkin A. V., Kadobnova N. V., Karasik I. I., Kikoin K. A., Krivoruchko V. A., Kulakov V. M., Lazarev S. D., Lifshits T. M., Lyubarskii Yu. E., Marin S. V., Maslov I. A., Meilikhov E. Z., Migachev A. I., Mironov S. A., Musatov A. L., Nikitin Yu. P., Novitskii L. A., Obukhov A. I., Ozhogin V. I., Pisarev R. V., Pisarevskii Yu. V., Ptuskin V. S., Radtsig A. A., Rudakov V. P., Summ B. D., Syunyaev R. A., Khlopkin M. N., Khlyustikov I. N., Cherepanov V. M., Chertov A. G., Shapiro V. G., Shustryakov V. M., Yakimov S. S., Yanovskii V. P. Pod. red. I. S. Grigor’eva, E. Z. Meilikhova. Fizicheskie velichiny: Spr. [Physical quantities: B.R.] Moscow: Energoizdat, 1991. 1232 p. (In Russ.)
5. Berdnikov V. S., Vinokourov V. A., Vinokourov V. V., Gaponov V. A., Markov V. A. General regularities of convective heat transfer in the crucible melt−crystal system of Czochralski method and their influence on the solidification front shape. Vestnik of the Lobachevsky NSU. 2011, no. 4(3), pp. 641—643. (In Russ.). http://www.vestnik.unn.ru/nomera?anum=7076
6. Berdnikov V. S. Hydrodynamics and heat transfer in crystal pulling from the melt. Part 1. Experimental studies of the regime of free convection. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronics Engineering. 2007, no. 4. pp. 19—27. (In Russ.).
7. Carruthers J. R. Flow transitions and interface shapes in Czochralski growth of oxide crystals. J. Cryst. Growth. 1976, vol. 36, no. 2, pp. 212—214. DOI: 10.1016/0022−0248(76)90280−3
8. Brandle C. D. Flow transitions in Czochralski oxide melts. J. Cryst. Growth. 1982, vol. 57, pp. 65—70. DOI:10.1016/0022−0248(82)90249−4
9. Nikolov V., Iliev K., Peskev P. Relationship between the hydrodynamics in the melt and the shape of the crystal/melt interface during Czochralski growth of oxide single crystals: II. Determination of the critical rotation rate from physical simulation data on growth in the presence of simultaneous free and forced convections; comparison with experimental data on crystal growth. J. Cryst. Growth. 1988, vol. 89, no. 2−3, pp. 324—330. DOI: 10.1016/0022−0248(88)90417−4
10. Basu B., Enger S., Breuer M., Durst F. Effect of crystal rotation on the three−dimensional mixed convection in the oxide melt for Czochralski growth. J. Cryst. Growth. 2001, vol. 230, pp. 148—154. DOI:10.1016/S0022−0248(01)01351−3
11. Verezub N. A., Nutsubidze M. N., Prostomolotov A. I. Convective heat transfer in the melt during the growth of single crystals of garnet structure by the Czochralski method. Fluid Dynamics. 1995, no. 4, pp. 29—38. (In Russ.)
12. Miller D. C., Pernell T. L. Fluid flow patterns in a simulated garnet melt. J. Cryst. Growth. 1982, vol. 58, pp. 253—260. DOI: 10.1016/0022−0248(82)90233−0
Review
For citations:
Verezub N.A., Prostomolotov A.I., Berdnikov V.S., Vinokurov V.A. Numerical and Experimental Study of the Influence of Thermal Processes on the Shape of Solidification Front in Czochralski Model for Heptadecane and Gallium. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2014;(4):257-267. (In Russ.) https://doi.org/10.17073/1609-3577-2014-4-257-267