EFFECT OF ANNEALING ON OFF−DIAGONAL MAGNETOIMPEDANCE IN AMORPHOUS MICROWIRES
https://doi.org/10.17073/1609-3577-2015-3-201-204
Abstract
Magnetoimpedance (MI) effect in amorphous ferromagnetic microwires represents is the ideal base for sensing technology and is currently used to develop high sensitive sensors of weak magnetic fields with a resolution up to few micro−Oersteds. The effect of heat treatment on off−diagonal MI in glass coated ferromagnetic amorphous microwires has been studied in order to improve MI sensitivity and temperature stability. We have shown the dependence of sensor signal on temperature. The wires had Co−based composition and internal stress induced helical or circumferential anisotropy. We have demonstrated that annealing of the entire sensing element including the electric contacts and the detection coil may improve the sensitivity of the output signal to an external magnetic field by about 25% and decrease its temperature sensitivity almost twofold in the −30…+80 °C range. These improvements require strict control of the annealing parameters. The best results are obtained for annealing at 160 °C for 2−3 minutes. The experimentally observed changes are related with stress relaxation during annealing; in particular; relaxation of the stresses occurring during solidification due to the difference in the thermal expansion coefficients of the metal core and the glass sheet.
Keywords
About the Authors
N. A. YudanovRussian Federation
Nikolay A. Yudanov — Еngineer
A. T. Morchenko
Russian Federation
Aleksandr T. Morchenko — Cand. Sci. (Phys.–Math.); Senior Researcher
L. V. Panina
Russian Federation
Larisa V. Panina
V. G. Kostishin
Russian Federation
Vladimir G. Kostishin — Dr. Sci. (Phys.– Math.); Head of Department of the Technology of Electronic Materials at the MISiS
S. A. Evstigneeva
Russian Federation
Svetlana A. Evstigneeva — student
References
1. Makhnovskiy D. P.; Panina L. V.; Mapps D. J. Field−dependent surface impedance tensor in amorphous wires with helical and circumferential anisotropy. Phys. Rev. 2001; vol. 63; p. 144424.
2. Ipatov M.; Zhukova V.; Zhukov A.; Gonzalez J.; Zvezdin A. Low−field hysteresis in the magnetoimpedance of amorphous microwires. Phys. Rev. – 2010; vol. 81. – Р.134421.
3. Pirota K.; Kraus L.; Chiriac H.; Knobel M. Magnetic properties and giant magnetoimpedance in a CoFeSiB glass−covered microwire. J. Magn. Mag. Mat. 2000; vol. 221; no. 3; pp. 243—247.
4. Mohri K.; Honkura Y.; Panina L.V.; Uchiyama T. Super MI Sensor: Recent Advances of Amorphous Wire and CMOS−IC Magneto−Impedance Sensor. J. Nanoscience and Nanotechnology. 2012; vol. 12; pp. 7491—7495.
5. Uchiyama T.; Mohri K.; Honkura Y.; Panina L.V. Recent Advances of Pico−Tesla Resolution Magneto−Impedance Sensor Basedon Amorphous Wire CMOS IC MI Sensor. IEEE Trans. Magn. 2012; vol. 48; pp. 3833—3839.
6. Zhukova V.; Chizhik A.; Zhukov A.; Torcunov A.; Larin V.; Gonzalez J. Optimization of Giant Magnetoimpedance in Co−rich Amorphous Microwires. IEEE Trans. Magn. 2002; vol. 38; pp. 3090—3092.
7. Chiriac H.; Ovari T.A.; Zhukov A. Magnetoelastic anisotropy of amorphous microwires. J. Magn. Magn. Mater. 2003; vol. 11; pp. 254—255.
8. Talaat A.; Zhukova V.; Ipatov M.; Blanco J. M.; Gonzalez−Legarreta L.; Hernando B.; del Val J. J.; Gonzalez J.; Zhukov A. Tailoring of magnetic properties and GMI effect of Co−rich amorphous microwires by heat treatment. J. Appl. Phys. 2014; vol. 41; p. 115.
9. Zhukov A.; Zhukova V.; Larin V.; Blanco J.M.; Gonzalez J. Tailoring of magnetic anisotropy of Fe−rich microwires by stress induced anisotropy. Phys. Rev. 2006; vol. 24; p. 384.
10. Zhukov A.; Talaat A.; Blanco J. M.; Ipatov M.; Zhukova V. Tuning of Magnetic Properties and GMI Effect of Co−Based Amorphous Microwires by Annealing. J. Electronic Materials. 2014; vol. 43; no. 12; pp. 4532—4539.
11. Zhu kov A .; Zhu kova V.; Blan ko J. M .; Cobeno A . F.; Vazques M.; Gonzalez J. Magnetostriction in glass−coated magnetic microwires. J. Magn. Mag. Mat. 2003; vol. 10; pp. 151—157.
12. Yudanov N. A.; Rudyonok A. A.; Panina L. V.; Kolesnikov A. V.; Morchenko A. T.; Kostishyn V. G. Off−diagonal magnetoimpedance in amorphous microwire and and his using in sensor by weak magnetic flap. Izvestia RAN; seria fizicheskaia. 2014; vol. 78; no. 11. (In Russ.)
13. Pan ina L . V.; Yudanov N. A .; Morchen ko A . T.; Kostishyn V. G.; Krutogin D. G.; Rudyonok A. A. Use the phenomena off− diagonal magnetoimpedance for building sensor by weak magnetic flap and current. Fizico−Himicheskie aspekti izuchenia klasterov; nanostruktur i nanomaterialov mezhvuzovckii sbornik nauchnih trudov. Tver’; 2013. Vol. 5; pp. 210—218.
14. Yudanov N. A .; Pan ina L . V.; Morchen ko A . T.; Kostishyn V. G.; Ryapolov P. A. High Sensitivity Magnetic Sensors Based on Off−diagonal Magnetoimpedance in amorphous FeCoSiB Wires. J. Nano− and Electronic Physics. 2013; vol. 5; no. 4; p. 04001 (4pp)
15. Yudanov N. A .; Pan ina L . V.; Morchen ko A . T.; Kostishyn V. G.; Ryapolov P. A. J. Nano− and Electronic Physics. 2013; vol. 5; p. 04004 (4 pp.).
Review
For citations:
Yudanov N.A., Morchenko A.T., Panina L.V., Kostishin V.G., Evstigneeva S.A. EFFECT OF ANNEALING ON OFF−DIAGONAL MAGNETOIMPEDANCE IN AMORPHOUS MICROWIRES. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(3):201-204. (In Russ.) https://doi.org/10.17073/1609-3577-2015-3-201-204