Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

DIPHENYL–2,2’,4,4’–TETRAAMINE PROPERTIES AND THE THIN–FILM TARGET OF A PYROELECTRIC THERMAL IMAGE TRANSDUCER ON ITS BASISON ITS BASIS

https://doi.org/10.17073/1609-3577-2015-3-205-211

Abstract

Methods and  results of studying diphenyl−2,2’,4,4’−tetraamine surface morphology and  structure obtained during  making the thin−film target of the Pyroelectric Thermal Image Transducer have been described. Quatum−chemical simulation  (HF/MP2,  cc−pVDZ base) of diphenyl−2,2’,4,4’−tetraamine (DPhTA) properties allows making conclusions on the nature of the pyroelectric properties of this polycrystalline material, since the hydrogen bonds between polycrystalline molecules are weaker than the intramolecular bonds.

The  research techniques were  X−ray  diffraction  analysis, optical  microscopy in polarized light, scanning electron microscopy, Fourier−transform IR spectroscopy, surface charge measurements of pyroelectric sample during  heating with the  use  of synchronous detection, testing of Pyroelectric Thermal  Image  Transducer targets on purpose−made high−vacuum technology equipment.

The methods of making  pyroelectric targets have  been described.

We have  manufactured the  Pyroelectric Thermal  Image  Transducer (λ =  8–14  microns, 18 mm diam.  target, 640х480 pixels) based on DPhTA in a metalloceramic case with a compact infrared imager having a resolution to 320х240 and a temperature sensitivity about 0.2 К in panning mode.

About the Authors

S. M. Zorin
Joint Stock Company «Russian Space Systems» (JSC «RSS»), Moscow
Russian Federation
Sergey M. Zorin — Head of Section


B. G. Goncharenko
Closed Joint-Stock Company «Infrasystems», Moscow
Russian Federation
Boris G. Goncharenko — Chief Designer


V. V. Kozlov
National University of Science and Technology «MISIS», Moscow
Russian Federation
Vladimir V. Kozlov — Associated Professor, Dr. Sci. (Eng.) 


A. N. Romanov
Research Computer Center M. V. Lomonosov Moscow State University, Moscow
Russian Federation
Alexey N. Romanov — Senior  Scientist, Cand.  Sci (Phys.− Math.)


V. D. Salov
Closed Joint-Stock Company «Infrasystems», Moscow
Russian Federation

Vladimir D. Salov — Division Head



References

1. Hanson C. M., Beratan H. R., Arbuthnot D. L. Uncooled thermal imaging with thin−film ferroelectric detectors. Proc. SPIE. Infrared Technology and Applications XXXIV. 2008, vol. 6940, article no. 694025, 12 p. DOI: 10.1117/12.783853

2. Romanov A. N., Gularyan S. K., Zorin S. M., Kozlov V. V., Goncharenko B. G., Salov V. D. Difenil−2,2’,4,4’−tetraamin molecular structure and the nature of the thin films based on it properties. Inzhenernyi vestnik Dona. 2014, no. 2. URL: http://www.ivdon.ru/ru/magazine/archive/n2y2014/2337 (accessed: 10.04.2016). (In Russ.)

3. Vilenchik L. S., Brukhnevich G. I., Goncharenko B. G., Zorin S. M., Salov V. D. Pyroelectric thermal image transducer (PETIT) — a novel principle of transforming infrared (IR) radiation (8—14 µm) to visual image without cooling. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronics Engineering. 2007, no. 1, pp. 45—48. (In Russ.)

4. Patent 2325725 (RF). Piroelektricheskii elektronno −opticheskii preobrazovatel’ izobrazheniya [Pyroelectric thermal tmage transducer]. B. G. Goncharenko, G. I. Brjuhnevich, V. D. Salov, S. M. Zorin, L. S. Vilenchik, V. A. Antipov, 2008. (In Russ.)

5. Patent 2431120 (RF). Rastrovyi priemnik infrakrasnogo izobrazheniya s vnutrennim usileniem [Raster−type thermal detector with intrinsic gain]. G. I. Brjuhnevich, L. S. Vilenchik, B. G. Goncharenko, S. M. Zorin, V. D. Salov, 2011. (In Russ.)

6. Ignatov S. K. Kvantovo−khimicheskoe modelirovanie molekulyarnoi struktury, fiziko−khimicheskikh svoistv i reaktsionnoi sposobnosti. Ch. 2. Optimizatsiya molekulyarnoi geometrii i raschet fiziko−khimicheskikh svoistv [Quantum chemical simulation for molecular structure, physicochemical propertys and reaction capacity]. Nizhny Novgorod, 2010. 80 p. (In Russ.)

7. Golovacheva A. Y., Romanov A. N., Sulimov V. B. Ab initio calculation of torsion and inversion barriers of the amino group in aminopyrimidines. J. Phys. Chem. A. 2005, vol. 109, no. 14, pp. 3244—3249.

8. Patent 2345439 (RF). Sposob izgotovleniya piroelektricheskogo elektronno −opticheskogo preobrazovatelya izobrazheniya i v ysoko vak uumn aya u stano vka, realizuyu shch aya etot sposob [A method of producing an pyroelectric thermal image transducer and high−vacuum technology equipment for its implementation]. B. G. Goncharenko, G. I. Brjuhnevich, L. S. Vilenchik, V. D. Salov, S. M. Zorin, G. A. Varaksin, S. Yu. Kartashov, 2009. (In Russ.)

9. Gridunova G. V., Shklover V. E., Struchkov Yu. T., Chayanov B. A. Molecular and crystalline diphenyl−2,2’,4,4’−tetraamine structure at a temperature of −120°C. Kristallografiya = Crystallography Reports, 1983, vol. 28, no. 2, pp. 286—290. (In Russ.)

10. Bush A. A. Piroelektricheskii effekt i ego primeneniya (uchebnoe posobie) [Pyroelectric effect and its applications]. Moscow: MGIREA, 2005. 212 p. (In Russ.)

11. Tetsuo Asaji, Alarich Weiss. Pyroelectricity of Molecular Crystals: Benzene Derivatives. Z. Naturforsch. 1985, bd. 40a, s. 567—754

12. Gorelik S. S., Skakov Yu. A., Rastorguev L. N. Rentgenograficheskii i elektronno−opticheskii analiz [X−ray and electron− optical analysis]. Moscow, MISiS, 1994. − 328 p. (In Russ.)

13. Pevtsov E. F., Sigov A. S., Maleto M. I., Svotina A. P. Physical characteristics complex measurements for ferroelectric thin films structures. Tonkie plenki v optike i elektronike. Ch. 2: Sbornik dokladov 14−go Mezhdunarodnogo simpoziuma «Tonkie plenki v optike i elektronike». Kharkov (Ukraine), 2002. Pp. 166—170. (In Russ.)

14. Aleksandrov S. E., Gavrilov G. A., Kapralov A. A., Smirnova E. P., Sotnikova G. Yu., Sotnikov A. V. Relaxer ferroelectrics as promising materials for IR detectors. Zhurnal Tekhnicheskoi Fiziki = Journal of Applied Physics. 2004, vol. 74, no. 9, pp. 72—76. (In Russ.)

15. Edwards M., Guggilla P., Corda J., Egarievwe S. Measurement of the dielectric, conductance, and pyroelectric properties of MWCNT: PVDF nanocomposite thin films for application in infrared technologies. Proc. SPIE. Infrared Sensors, Devices, and Applications III. 2013, vol. 8868, article no. 88680E. DOI: 10.1117/12.2023097.

16. Batra A. K., Edwards M. E., Guggilla P., Aggarwal M. D., Lal R. B. Pyroelectric properties of PVDF: MWCNT nanocomposite film for uncooled infrared detectors and medical applications. Integrated Ferroelectrics. 2014, vol. 158, no. 1, pp. 98—107. DOI: 10.1080/10584587.2014.957559

17. Batra A. K., Aggarwal M. D. Pyroelectric Materials: Infrared Detectors, Particle Accelerators, and Energy Harvesters. Bellingham (Washington, USA): SPIE Press, 2013. 202 p. 212-220.


Review

For citations:


Zorin S.M., Goncharenko B.G., Kozlov V.V., Romanov A.N., Salov V.D. DIPHENYL–2,2’,4,4’–TETRAAMINE PROPERTIES AND THE THIN–FILM TARGET OF A PYROELECTRIC THERMAL IMAGE TRANSDUCER ON ITS BASISON ITS BASIS. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(3):205-211. (In Russ.) https://doi.org/10.17073/1609-3577-2015-3-205-211

Views: 988


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)