DIPHENYL–2,2’,4,4’–TETRAAMINE PROPERTIES AND THE THIN–FILM TARGET OF A PYROELECTRIC THERMAL IMAGE TRANSDUCER ON ITS BASISON ITS BASIS
https://doi.org/10.17073/1609-3577-2015-3-205-211
Abstract
Methods and results of studying diphenyl−2,2’,4,4’−tetraamine surface morphology and structure obtained during making the thin−film target of the Pyroelectric Thermal Image Transducer have been described. Quatum−chemical simulation (HF/MP2, cc−pVDZ base) of diphenyl−2,2’,4,4’−tetraamine (DPhTA) properties allows making conclusions on the nature of the pyroelectric properties of this polycrystalline material, since the hydrogen bonds between polycrystalline molecules are weaker than the intramolecular bonds.
The research techniques were X−ray diffraction analysis, optical microscopy in polarized light, scanning electron microscopy, Fourier−transform IR spectroscopy, surface charge measurements of pyroelectric sample during heating with the use of synchronous detection, testing of Pyroelectric Thermal Image Transducer targets on purpose−made high−vacuum technology equipment.
The methods of making pyroelectric targets have been described.
We have manufactured the Pyroelectric Thermal Image Transducer (λ = 8–14 microns, 18 mm diam. target, 640х480 pixels) based on DPhTA in a metalloceramic case with a compact infrared imager having a resolution to 320х240 and a temperature sensitivity about 0.2 К in panning mode.
About the Authors
S. M. ZorinRussian Federation
Sergey M. Zorin — Head of Section
B. G. Goncharenko
Russian Federation
Boris G. Goncharenko — Chief Designer
V. V. Kozlov
Russian Federation
Vladimir V. Kozlov — Associated Professor, Dr. Sci. (Eng.)
A. N. Romanov
Russian Federation
Alexey N. Romanov — Senior Scientist, Cand. Sci (Phys.− Math.)
V. D. Salov
Russian Federation
Vladimir D. Salov — Division Head
References
1. Hanson C. M., Beratan H. R., Arbuthnot D. L. Uncooled thermal imaging with thin−film ferroelectric detectors. Proc. SPIE. Infrared Technology and Applications XXXIV. 2008, vol. 6940, article no. 694025, 12 p. DOI: 10.1117/12.783853
2. Romanov A. N., Gularyan S. K., Zorin S. M., Kozlov V. V., Goncharenko B. G., Salov V. D. Difenil−2,2’,4,4’−tetraamin molecular structure and the nature of the thin films based on it properties. Inzhenernyi vestnik Dona. 2014, no. 2. URL: http://www.ivdon.ru/ru/magazine/archive/n2y2014/2337 (accessed: 10.04.2016). (In Russ.)
3. Vilenchik L. S., Brukhnevich G. I., Goncharenko B. G., Zorin S. M., Salov V. D. Pyroelectric thermal image transducer (PETIT) — a novel principle of transforming infrared (IR) radiation (8—14 µm) to visual image without cooling. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronics Engineering. 2007, no. 1, pp. 45—48. (In Russ.)
4. Patent 2325725 (RF). Piroelektricheskii elektronno −opticheskii preobrazovatel’ izobrazheniya [Pyroelectric thermal tmage transducer]. B. G. Goncharenko, G. I. Brjuhnevich, V. D. Salov, S. M. Zorin, L. S. Vilenchik, V. A. Antipov, 2008. (In Russ.)
5. Patent 2431120 (RF). Rastrovyi priemnik infrakrasnogo izobrazheniya s vnutrennim usileniem [Raster−type thermal detector with intrinsic gain]. G. I. Brjuhnevich, L. S. Vilenchik, B. G. Goncharenko, S. M. Zorin, V. D. Salov, 2011. (In Russ.)
6. Ignatov S. K. Kvantovo−khimicheskoe modelirovanie molekulyarnoi struktury, fiziko−khimicheskikh svoistv i reaktsionnoi sposobnosti. Ch. 2. Optimizatsiya molekulyarnoi geometrii i raschet fiziko−khimicheskikh svoistv [Quantum chemical simulation for molecular structure, physicochemical propertys and reaction capacity]. Nizhny Novgorod, 2010. 80 p. (In Russ.)
7. Golovacheva A. Y., Romanov A. N., Sulimov V. B. Ab initio calculation of torsion and inversion barriers of the amino group in aminopyrimidines. J. Phys. Chem. A. 2005, vol. 109, no. 14, pp. 3244—3249.
8. Patent 2345439 (RF). Sposob izgotovleniya piroelektricheskogo elektronno −opticheskogo preobrazovatelya izobrazheniya i v ysoko vak uumn aya u stano vka, realizuyu shch aya etot sposob [A method of producing an pyroelectric thermal image transducer and high−vacuum technology equipment for its implementation]. B. G. Goncharenko, G. I. Brjuhnevich, L. S. Vilenchik, V. D. Salov, S. M. Zorin, G. A. Varaksin, S. Yu. Kartashov, 2009. (In Russ.)
9. Gridunova G. V., Shklover V. E., Struchkov Yu. T., Chayanov B. A. Molecular and crystalline diphenyl−2,2’,4,4’−tetraamine structure at a temperature of −120°C. Kristallografiya = Crystallography Reports, 1983, vol. 28, no. 2, pp. 286—290. (In Russ.)
10. Bush A. A. Piroelektricheskii effekt i ego primeneniya (uchebnoe posobie) [Pyroelectric effect and its applications]. Moscow: MGIREA, 2005. 212 p. (In Russ.)
11. Tetsuo Asaji, Alarich Weiss. Pyroelectricity of Molecular Crystals: Benzene Derivatives. Z. Naturforsch. 1985, bd. 40a, s. 567—754
12. Gorelik S. S., Skakov Yu. A., Rastorguev L. N. Rentgenograficheskii i elektronno−opticheskii analiz [X−ray and electron− optical analysis]. Moscow, MISiS, 1994. − 328 p. (In Russ.)
13. Pevtsov E. F., Sigov A. S., Maleto M. I., Svotina A. P. Physical characteristics complex measurements for ferroelectric thin films structures. Tonkie plenki v optike i elektronike. Ch. 2: Sbornik dokladov 14−go Mezhdunarodnogo simpoziuma «Tonkie plenki v optike i elektronike». Kharkov (Ukraine), 2002. Pp. 166—170. (In Russ.)
14. Aleksandrov S. E., Gavrilov G. A., Kapralov A. A., Smirnova E. P., Sotnikova G. Yu., Sotnikov A. V. Relaxer ferroelectrics as promising materials for IR detectors. Zhurnal Tekhnicheskoi Fiziki = Journal of Applied Physics. 2004, vol. 74, no. 9, pp. 72—76. (In Russ.)
15. Edwards M., Guggilla P., Corda J., Egarievwe S. Measurement of the dielectric, conductance, and pyroelectric properties of MWCNT: PVDF nanocomposite thin films for application in infrared technologies. Proc. SPIE. Infrared Sensors, Devices, and Applications III. 2013, vol. 8868, article no. 88680E. DOI: 10.1117/12.2023097.
16. Batra A. K., Edwards M. E., Guggilla P., Aggarwal M. D., Lal R. B. Pyroelectric properties of PVDF: MWCNT nanocomposite film for uncooled infrared detectors and medical applications. Integrated Ferroelectrics. 2014, vol. 158, no. 1, pp. 98—107. DOI: 10.1080/10584587.2014.957559
17. Batra A. K., Aggarwal M. D. Pyroelectric Materials: Infrared Detectors, Particle Accelerators, and Energy Harvesters. Bellingham (Washington, USA): SPIE Press, 2013. 202 p. 212-220.
Review
For citations:
Zorin S.M., Goncharenko B.G., Kozlov V.V., Romanov A.N., Salov V.D. DIPHENYL–2,2’,4,4’–TETRAAMINE PROPERTIES AND THE THIN–FILM TARGET OF A PYROELECTRIC THERMAL IMAGE TRANSDUCER ON ITS BASISON ITS BASIS. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(3):205-211. (In Russ.) https://doi.org/10.17073/1609-3577-2015-3-205-211