Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

SURFACE DIPOLE ORDERING OF SUBMICRON POLYDIPHENYLENEPHTHALIDE FILMS

https://doi.org/10.17073/1609-3577-2015-4-233-239

Abstract

This paper considers the problem of surface dipole ordering of thin polymer layers with nanometer range thicknesses. We have experimentally studied submicron dielectric films of electrically active polydiphenylenephthalide polymer composed of molecules that included a side phthalide group with a relatively large dipole moment. The interest to this polymer is caused by an abnormally high conductivity at the polymer/polymer interface which was previously associated with possible superficial ordering of the phthalide groups. Using the methods of piezoresponse force microscopy we have explored the surface of submicron films synthesized by centrifugation. We have detected a manifestation of spontaneous polarization indicating the ordering of dipoles. Also, in order to determine the bulk and surface contributions to the polarization of the films we have studied the polarization and relaxation in samples of different thicknesses. With a reduction of the thickness the piezoelectric response of the signal increases and electrically generated domains acquire ideal radial shapes. This confirms that the surface layers of the polymer film make the predominant contribution to orientation processes. Polarization switching occurs in the films, manifested by the change of the piezoelectric response signal contrast when fields of different polarity are applied. We use these surface phenomena to explain the unique electronic properties of the boundaries of polar organic dielectrics.

About the Authors

D. D. Karamov
Bashkir State Pedagogical University named after M. Akmulla; Ufa Scientific Center of Russian Academy of Sciences
Russian Federation
3a Oktyabrskoy revolyutsii Str., Ufa 450000, Republic of Bashkortostan


D. A. Kiselev
National University of Science and Technology «MISIS»
Russian Federation

Dmitry A. Kiselev — Cand. Sci. (Phys.−Math.), Senior Researcher; 

4 Leninsky Prospekt, Moscow 119049



M. D. Malinkovich
National University of Science and Technology «MISIS»
Russian Federation

Mikhail D. Malinkovich — Cand. Sci. (Phys.− Math.), Ass. Prof. 

4 Leninsky Prospekt, Moscow 119049



V. M. Kornilov
Bashkir State Pedagogical University named after M. Akmulla
Russian Federation
3a Oktyabrskoy revolyutsii Str., Ufa 450000, Republic of Bashkortostan


A. N. Lachinov
Башкирский государственный педагогический университет им. Акмуллы; ФГБУ Уфимский научный центр РАН
Russian Federation


R. M. Gadiev
Bashkir State Pedagogical University named after M. Akmulla
Russian Federation
3a Oktyabrskoy revolyutsii Str., Ufa 450000, Republic of Bashkortostan


References

1. Bune A. V., Fridkin V. M., Ducharme S., Blinov L. M., Palto S. P., Sorokin A. V., Yudin S. G., Zlatkin A. Two−dimensional ferroelectric films. Nature, 1998, vol. 391, no. 6670, pp. 874—877.

2. Fridkin V. M., Ducharme S. Ferroelectricity at the nanoscale. Physics−Uspekhi, 2014, vol. 57, no. 6, pp. 597—603. DOI: 10.3367/ UFNr.0184.201406d.0645

3. Khan M. A., Bhansali U. S., Almadhoun M. N., Odeh I. N., Cha D., Alshareef H. N. High−performance ferroelectric memory based on phase−separated films of polymer blends. Advanced Functional Materials, 2014, vol. 24, no. 10, pp. 1372—1381.

4. Blinov L. M., Fridkin V. M., Palto S. P., Bune A. V., Dowben P. A., Ducharme S. Two−dimensional ferroelectrics. Physics− Uspekhi, 2000, vol. 43, no. 3, pp. 243—257. DOI: 10.1070/PU2000v043n03ABEH000639

5. Alves H., Molinari A. S., Xie H., Morpurgo A. F. Metallic conduction at organic charge−transfer interfaces. Nature materials, 2008, vol. 7, no. 7, pp. 574—580. DOI: 10.1038/nmat2205

6. Gadiev R. M., Lachinov A. N., Salikhov R. B., Rakhmeev R. G., Kornilov V. M., Yusupov A. R. The conducting polymer/polymer interface. Appl. Phys. Lett., 2011, vol. 98, no.17, pp. 173305−1—173305−3. DOI: 10.1063/1.3584135

7. Gadiev R. M., Lachinov A. N., Galiev A. F., Kalimullina L. R., Nabiullin I. R. Effect of dipole ordering on the electrical properties of the interface between two organic insulators. J. Experimental and Theoretical Phys. Lett., 2014, vol. 100, no.4, pp. 251—255. DOI: 10.1134/ S0021364014160061

8. Frank Peter. Piezoresponse Force Microscopy and Surface Effects of Perovskite Ferroelectric Nanostructures. Schriften des Forschungszentrums Julich Reihe Informationstechnik, Information Technology Band 11, 2006. 106 p.

9. Bystrov V. S., Bdikin I. K., Kiselev D. A., Yudin S., Fridkin V. M., Kholkin A. L. Nanoscale polarization patterning of ferroelectric Langmuir—Blodgett P (VDF−TrFE) films. J. Phys. D: Appl. Phys. 2007, vol. 40, no. 15, pp. 4571—4577. DOI: 10.1088/00223727/40/15/030

10. Wu C. R., Lachinov A. N., Johansson N., Stafstrom S., Kugler T., Rasmusson J., Salaneck W. R. Some chemical and electronic structures of the non−conjugated polymer poly (3, 3′−phthalidylidene− 4, 4′−biphenylene). Synthetic Metals, 1994, vol. 67, no. 1. pp. 125—128. DOI: 10.1016/0379−6779(94)90024−8

11. Kukhta A., Kukhta I., Salazkin S. Polydiphenylenephthalide: Optical Spectroscopy and DFT Calculations. Materials Science− Medziagotyra. 2011, vol. 17, no. 3, pp. 266—270.

12. Kiselev D. A., Zhukov R. N., Ksenich S. V., Kozlova A. P., Bykov A. S., Malinkovich M. D., Parkhomenko Yu. N. Investigation of the ferroelectric properties and dynamics of nanodomains in LiNbO3 thin films grown on Si (100) substrate by scanning probe microscopy techniques. Thin Solid Films. 2014, vol. 556, pp. 142—145. DOI: 10.1016/j.tsf.2014.01.041

13. Kiselev D. A., Kholkin A. L., Bogomolov A. A., Sergeeva O. N., Kaptelov E. Y., Pronin I. P. Piezo− and pyroelectric hysteresis in thin unipolar PZT films. Technical Physics Letters. 2008, vol. 34, no. 8, pp. 646—649. DOI: 10.1134/S1063785008080063

14. Kholkin A. L., Brooks K. G., Taylor D. V., Hiboux S., Setter N. Self−polarization effect in Pb(Zr, Ti)O3 thin films. Integrated Ferroelectrics: An International Journal. 1998, vol. 22, no. 1−4, pp. 525—533. DOI: 10.1080/10584589808208071

15. Jonscher A. K. Universal relaxation law. London: Chelsea Dielectric Press, 1996. 415 p.

16. Kornilov V. M., Lachinov A. N. Electron−microscopic analysis of polymer thin films capable of switching to the conductive state. Synthetic metals. 1992, vol. 53, no. 1, pp. 71—76. DOI: 10.1016/03796779(92)90009-8

17. Kiselev D. A., Zhukov R. N., Bykov A. S., Malinkovich M. D., Parkhomenko Yu. N., Vygovsksya E. A. Initiation of Polarized State in Lithium Niobate Thin Films Synthesized on Isolated Silicon Substrates. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronics Engineering. 2012, no. 2, pp. 25—29.

18. Lines M. E., Glass A. M. Principles and Application of Ferroelectrics and Related Materials. Oxford: Clarendon Press, 1977. 736 p.


Review

For citations:


Karamov D.D., Kiselev D.A., Malinkovich M.D., Kornilov V.M., Lachinov A.N., Gadiev R.M. SURFACE DIPOLE ORDERING OF SUBMICRON POLYDIPHENYLENEPHTHALIDE FILMS. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(4):233-239. (In Russ.) https://doi.org/10.17073/1609-3577-2015-4-233-239

Views: 843


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)