Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

FORMATION OF BIDOMAIN STRUCTURE IN LITHIUM NIOBATE WAFERS FOR BETAVOLTAIC ALTERNATORS

https://doi.org/10.17073/1609-3577-2015-4-255-260

Abstract

This article discusses the possibility of increasing the efficiency of betavoltaic generators by using lithium niobate single−crystal bimorph as the piezoelectric transducer element. Existing betavoltaic alternating voltage generators consist of a piezoelectric cantilever and a  electron source, wherein the cantilever is a resilient member, for example silicon, to which a PZT ceramics piezoelectric element is connected. In this study we suggest changing the structure of the silicon cantilever with a piezoelectric element for a uniform cantilever which is a thin plate of bidomain lithium niobate single crystal. This increases the efficiency of converting mechanical vibrations to electrical power, Q of the system, and the stability of the working parameters, and furthermore significantly increases — up to several hundred degrees — the operation temperature range. We have considered in details the solution of the main task —formation of a bidomain structure in a thin lithium niobate plate. A method of the sample high−temperature annealing in a nonuniform electric field is proposed. The possibility of domain structure prediction on the basis of the developed model is shown. Samples with a domain boundary depth of 120—150 microns have been obtained, and we have shown that the clarity of the boundary depends on the voltage between the working cell strip electrodes and the external electrode. The method is effective for bidomain structure formation in plates of about 300 microns in thickness.

About the Authors

M. D. Malinkovich
National University of Science and Technology «MISIS»
Russian Federation

Mikhail D. Malinkovich — Cand. Sci. (Phys.−Math.), Ass. Prof. 

4 Leninsky Prospekt, Moscow 119049



A. S. Bykov
National University of Science and Technology «MISIS»
Russian Federation

Alexander S. Bykov — Cand. Sci. (Eng.), Ass. Prof.  

4 Leninsky Prospekt, Moscow 119049



I. V. Kubasov
National University of Science and Technology «MISIS»
Russian Federation
lya V. Kubasov — Engineer


D. A. Kiselev
National University of Science and Technology «MISIS»
Russian Federation
Dmitry A. Kiselev — Cand. Sci. (Phys.−Math.), Senior Researcher


S. V. Ksenich
National University of Science and Technology «MISIS»
Russian Federation
Sergey V. Ksenich — Engineer


R. N. Zhukov
National University of Science and Technology «MISIS»
Russian Federation
Roman N. Zhukov — Engineer


A. A. Temirov
National University of Science and Technology «MISIS»
Russian Federation
Alexsander A. Temirov — Engineer


N. G. Timushkin
National University of Science and Technology «MISIS»
Russian Federation

Nikita G. Timushkin — Engineer



Yu. N. Parkhomenko
National University of Science and Technology «MISIS»
Russian Federation
Yuri N. Parkhomenko — Dr. Sci. (Phys.–Math.), Prof., Head of Department of the Material Science of Semiconductors and Dielectrics at the MISiS


References

1. Yurchuk S. Yu., Legotin S. A., Murashev V. N., Krasnov A. A., Omel’chenko Yu. K., Osipov Yu. V., Didenko S. I., Rabinovich O. I. Simulation the Beta Power Sources Characteristics. J. Nano− And Electronic Physics. 2015, vol. 7, no. 3, pp. 03014−1—03014−5

2. Murashev V. N., Legotin S. A., Rabinovich O. I., Abdulaev O. R., Osipov U. V. Silicon Betavoltaic Batteries Structures. J. Nano− And Electronic Physics. 2015. vol. 7. no. 4, pp. 04034−1— 04034−3

3. Duggirala R., Polcawich R. G., Dubey M., Lal A. Radioisotope Thin−Film Fueled Microfabricated Reciprocating Electromechanical Power Generator. Journal of Microelectromechanical Systems, 2008, vol. 17, no. 4, pp. 837—849. DOI: 10.1109/JMEMS.2008.924854

4. Wang Q.−M., Cross L. E. Performance analysis of piezoelectric cantilever bending actuators. Ferroelectrics. 1998, vol. 215, no. 1, pp. 187—213. DOI: 10.1080/00150199808229562

5. Friend J., Umeshima A., Ishii T., Nakamura K., Ueha S. A piezoelectric linear actuator formed from a multitude of bimorphs. Sensors and Actuators A: Physical. 2004, vol. 109, no. 3, pp. 242—251. DOI:10.1016/j.sna.2003.10.040

6. Lal A., Blanchard J. Daintiest dynamos [nuclear microbatteries]. IEEE Spectrum. 2004, vol. 41, no. 9, pp. 36—41. DOI: 10.1109/MSPEC.2004.1330808

7. Lal A., Duggirala R., Li H. Pervasive power: a radioisotope− powered piezoelectric generator. IEEE Pervasive Computing, 2005, vol. 4, no. 1, pp. 53—61. DOI: 10.1109/MPRV.2005.21

8. Duggirala R., Li H., Lal A. High efficiency  radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics. Appl. Phys. Lett. 2008, vol. 92, no. 15, pp. 154104−1−3. DOI: 10.1063/1.2912522

9. Funasaka T., Furuhata M., Hashimoto Y., Nakamura K. Piezoelectric generator using a LiNbO3 plate with an inverted domain. IEEE Ultrasonics Symposium Proceedings, 1998, vol. 1, pp. 959—962.

10. Uchino K., Yoshizaki M., Nagao A. Monomorph characteristics in Pb(Zr,Ti)O3 based ceramics. Ferroelectrics, 1989, vol. 95, no. 1, pp. 161—164. DOI: 10.1080/00150198908245196

11. Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Appl. Phys. Lett. 1987, vol. 50, no. 20, pp. 1413—1414. DOI: 10.1063/1.97838

12. Kubasov I. V., Timshina M. S., Kiselev D. A., Malinkovich M. D., Bykov A. S., Parkhomenko Yu. N. Interdomain region in single− crystal lithium niobate bimorph actuators produced by light annealing. Crystallography Reports, 2015, vol. 60, no. 5, pp. 700—705. DOI: 10.1134/S1063774515040136

13. Antipov V. V., Bykov A. S., Malinkovich M. D., Parkhomenko Y. N. Formation of bidomain structure in lithium niobate single crystals by electrothermal method. Ferroelectrics, 2008, vol. 374. no. 1, pp. 65—72. DOI: 10.1080/00150190802427127

14. Gopalan V., Dierolf V., Scrymgeour D. A. Defect−domain wall interactions in trigonal ferroelectrics. Annual Review of Materials Research, 2007, vol. 37, pp. 449—489. DOI: 10.1146/annurev. matsci.37.052506.084247

15. Niizeki N., Yamada T., Toyoda H. Growth ridges, etched hillocks, and crystal structure of lithium niobate. Jap. J. Appl. Phys. 1967, vol. 6, no. 3, pp. 318—327.

16. Bykov A. S., Grigoryan S. G., Zhukov R. N., Kiselev D. A., Ksenich S. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Yu. N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method. Russian Microelectronics, 2014, vol. 43, no. 8, pp. 536—542. DOI: 10.1134/S1063739714080034


Review

For citations:


Malinkovich M.D., Bykov A.S., Kubasov I.V., Kiselev D.A., Ksenich S.V., Zhukov R.N., Temirov A.A., Timushkin N.G., Parkhomenko Yu.N. FORMATION OF BIDOMAIN STRUCTURE IN LITHIUM NIOBATE WAFERS FOR BETAVOLTAIC ALTERNATORS. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(4):255-260. (In Russ.) https://doi.org/10.17073/1609-3577-2015-4-255-260

Views: 914


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)