Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

EFFECT OF THE BASE COMPOSITION AND MICROSTRUCTURE ON THE LEVEL OF ABSORPTION OF ELECTROMAGNETIC RADIATION IN NICKEL−ZINC FERRITE

https://doi.org/10.17073/1609-3577-2015-4-261-266

Abstract

Promising absorbing materials include Ni—Zn−ferrites, as they quite intensively absorb electromagnetic waves in the 50 MHz to 1000 MHz frequency range. In this paper we have studied the electromagnetic properties of Ni—Zn ferrite absorbing materials obtained in different technological modes. We propose a model that allows one to evaluate the dielectric constant of the ferrite material depending on the parameters of the microstructure and electrical properties of grain boundaries. Influence of base composition and microstructure on the level of absorption of electromagnetic radiation by Ni—Zn ferrite absorbing materials has been found. An increase in Fe₂O₃ excess to 51 % has been found to shift the frequency interval of electromagnetic radiation absorption towards lower frequencies, and this effect can be explained by an increase in the dielectric and magnetic constants of ferrite. Introduction of excess Fe₂O₃ in step 2 of grinding proved to be more efficient. An increase in the sintering temperature to 1350 °C also provides for a shift of electromagnetic radiation absorption frequency interval towards lower frequencies, which can be explained by an increase of the dielectric and magnetic constants of ferrite and resonance frequency shift of domain walls due to the formation of a coarse−grained structure.

About the Authors

V. G. Andreev
Kuznetsk Institute of Information and Management Technologies (branch of Penza State University)
Russian Federation

Valery G. Andreev — Dr. Sci. (Eng.), Professor 

57A Mayakovsky Str., Kuznetsk, Penza region 442530



S. B. Menshova
Kuznetsk Institute of Information and Management Technologies (branch of Penza State University)
Russian Federation

Svetlana B. Menshova — Cand. Sci. (Eng.), Researcher 

57A Mayakovsky Str., Kuznetsk, Penza region 442530



V. G. Kostishin
National University of Science and Technology «MISIS»
Russian Federation

Vladimir G. Kostishin — Dr. Sci. (Phys.–Math.), Professor, Head of Department of the Technology of Electronic Materials 

4 Leninsky Prospekt, Moscow 119049



D. N. Chitanov
National University of Science and Technology «MISIS»
Russian Federation

Denis N. Chitanov — Cand. Sci. (Phys.−Math.), Head of Laboratory 

4 Leninsky Prospekt, Moscow 119049



A. N. Klimov
Kuznetsk Institute of Information and Management Technologies (branch of Penza State University)
Russian Federation

Alexey N. Klimov — Engineer 

57A Mayakovsky Str., Kuznetsk, Penza region 442530



A. Yu. Kirina
Kuznetsk Institute of Information and Management Technologies (branch of Penza State University)
Russian Federation

Alina Yu. Kirina — Engineer 

57A Mayakovsky Str., Kuznetsk, Penza region 442530



R. M. Vergazov
Penza State University
Russian Federation

Rashit M. Vergazov — Engineer 

40 Krasnaya Str., Penza 440026



S. B. Bibikov
N.M. Emanuel Institute of Biochemical Physics RAS
Russian Federation

Sergey B. Bibikov — Cand. Sci. (Phys.−Math.), Head of Laboratory 

4 Kosygin Str., Moscow 119334



M. V. Prokofev
Moscow Aviation Institute (National Research University)
Russian Federation

Mikhail V. Prokofev — Cand. Sci. (Chem.), Ass. Professor 

4 Volokolamskoe Shosse, Moscow 125993



References

1. Kim D. Developments of new em wave absorbers. International Symposium on Electrical & Electronics Engineering. 2005 Oct. 11, 12 205 HCM City, Vietnam, pp. 23—29.

2. Lapshin E. V., Bibikov S.B., Prokof’ev M.V., Vergazov R.M. Effect of microstructure parameters on radio physical characteristics of the Ni—Zn ferrite materials. Izv. vuzov. Povolzhskii region. Tekhnicheskie nauki = Math. universities. Volga region. Technical sciences. 2010, no. 3 (15), pp. 123—135. (In Russ.)

3. Shinroh Itoh, Yasuharu Miyoshi. Radio wave absorption material and radio wave absorber. US Patent № 8138959 B2. H01F1/34B2, H05K9/00M2, H01F1/36, C04B35/26H. 18.10.2007.

4. Osamu Kobayashi, Kiyoshi Ito, Masashi Norizuki. Electromagnetic wave absorber formed of Mn—Zn ferrite. US Patent No. US7108799 B2. H01Q17/00, C04B35/26H, C04B35/057, C04B35/626A6H. 30.01.2004.

5. Osamu Kobayashi, Osamu Yamada, Kiyoshi Ito. A mixed oxides of iron, zinc, titanium, tin, manganese, and calcium; high electrical resistance, permeability, soft magnetism in a high frequency band, stable grain structure; power supply switches, electromagnetic wave absorbers. US Patent No. 6984338 B2. C04B35/26H, H01F1/34B2. 28.01.2004.

6. Goncar A., Andreev V., Letyuk L. Problems of increasing of thermostability of highly permeable Ni—Zn ferrites and for telecommunications. J. Magnetism and Magnetic Materials. 2003, vol. 254− 255. pp. 544—546.

7. Kostishin V. G., Vergazov R. M., Andreev V. G., Bibikov S. B. Influence of Technological Factors on Dielectric Permeability and Radio−Wave Absorbing Characteristics of Nickel−Zinc Ferrites. Russian Microelectronics. 2012, vol. 41, nо. 8, pp. 469—473.

8. Kaneva I. I., Kostishyn V. G., Andreev V. G., Nikolaev A. N., Volkova E. I. Study the possibility of obtaining a manganese−zinc ferrite on the short flowsheet. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronic Technics. 2013, no. 1, pp. 23—27. DOI: 10.17073/1609-3577-2013-1-23-27 (In. Russ.)

9. Nepomnyashchii V. V., Mosina T. V., Radchenko A. K., Nazarenko V. A. Influence of different technological methods of manufacturing powder permanent magnets on their properties. Poroshkovaya metallurgiya = Powder Metallurgy and Metal Ceramics. 2009, no. 1/2, pp. 143—147. (In. Russ.)

10. Makhnach L.V., Lomonosov V. A., Saevich V. V., Novitskaya M. V., Pan’kov V. V. Effect oxide with perovskite structure additives on the microstructure and properties of some zinc−magnesium ferrite. Vestnik BGU = Bulletin BSU. 2011, vol. 2, no 1, pp. 10—14.

11. Sunny V., Kurian Ph., Mohanan P., Joy P. A., Anantharaman M. R. A flexible microwave absorber based on nickel ferrite nanocomposite. Journal of Alloys and Compounds. 2010, vol. 489, no. 1, pp. 297—303. DOI: 10.1016/j.jallcom.2009.09.077

12. Kostishyn V. G., Vergazov R. M., Andreev V. G., Bibikov S. B., Podgornaya S. V., Morchenko A. T. Effect of microstructure on the properties of radar absorbing nickel−zinc ferrite. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronic Technics. 2010, no. 4, pp. 18—22. (In. Russ.).

13. Ing Kong, Sahrim Hj Ahmad, Mustaffa Hj Abdullah, David Hui, Ahmad Nazlim Yusoff, Dwi Puryanti, Magnetic and microwave absorbing properties of magnetite−thermoplastic natural rubber nanocomposites. Journal of Magnetism and Magnetic Materials. 2010, vol. 322, no. 21, pp. 3401—3409. DOI: 10.1016/j.jmmm.2010.06.036

14. Kostishyn V. G., Vergazov R. M., Andreev V. G., Bibikov S. B., Podgornaya S. V., Morchenko A. T. Effect of the microstructure on the properties of radio−absorbing nickel−zinc ferrites. Russian Microelectronics. 2011, vol. 40. no 8. pp. 574—577.

15. Kostishyn V. G., Kozhitov L. V., Vergazov R. M., Andreev V. G., Morchenko A. T. Radar−absorbing ferrite. RF patent. number 2417268 from 27.04.2011.

16. Kostishyn V. G., Kozhitov L. V., Andreev V. G., Morchenko A. T., Molchanov A. U. Anechoic chamber. RF patent. number 2447551 from 10.04.2012.


Review

For citations:


Andreev V.G., Menshova S.B., Kostishin V.G., Chitanov D.N., Klimov A.N., Kirina A.Yu., Vergazov R.M., Bibikov S.B., Prokofev M.V. EFFECT OF THE BASE COMPOSITION AND MICROSTRUCTURE ON THE LEVEL OF ABSORPTION OF ELECTROMAGNETIC RADIATION IN NICKEL−ZINC FERRITE. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(4):261-266. (In Russ.) https://doi.org/10.17073/1609-3577-2015-4-261-266

Views: 1092


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)