Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Magnetoresistance in nanosize strontium ferromolybdate with dielectric interlayers

https://doi.org/10.17073/1609-3577-2016-3-149-155

Abstract

Single phase strontium ferromolybdate nanopowder with a double perovskite structure has been synthesized using the citrate gel technique at pH = 4. A superstructural ordering degree of the iron and molybdenum cations of 88% has been obtained. X−ray diffraction of pressed Sr2FeMoO6−δ pellets subjected to annealing at T = 700 K and p(O2) = 10 Pa has revealed the formation of the SrMoO4 phase at grain boundaries. The temperature dependence of the electrical resistivity in the 4.2 to 300 K range changes from a metal type one in the single phase Sr2FeMoO6−δ to a semiconductor type one in the Sr2FeMoO6−δ – SrMoO4 – Sr2FeMoO6−δ structure containing dielectric interlayers, indicating variable charge hopping in the latter structure. In the applied magnetic fields the temperature dependence does not change qualitatively; however, the resistivity decreases with increasing field, i.e., a negative magnetoresistance of up to 41% at T = 10 K and B = 8 T is observed. The external field forms a collinear spin structure, thus increasing the spin−polarized current through the barriers in the granular Sr2FeMoO6−δ – SrMoO4 – Sr2FeMoO6−δ heterostructure.

About the Authors

M. V. Yarmolich
Scientific-Practical Materials Research Centre of the NAS of Belarus.
Belarus

Marta V. Yarmolich — Junior Researcher. 

19 P. Brovka Str., Minsk 220072.



N. A. Kalanda
Scientific-Practical Materials Research Centre of the NAS of Belarus.
Belarus

Nikolay A. Kalanda — Leading Researcher, Cand. Sci. (Phys.− Math.).

19 P. Brovka Str., Minsk 220072.



I. A. Svito
Belarusian State University.
Belarus

 Ivan A. Svito — Researcher.

 4 Nezavisimosti Avenue, Minsk 220030.



A. L. Zhaludkevich
Scientific-Practical Materials Research Centre of the NAS of Belarus.
Belarus

Aliaksandr L. Zhaludkevich — Researcher. 

19 P. Brovka Str., Minsk 220072.



N. A. Sobolev
Departamento de Física and I3N, Universidade de Aveiro.
Portugal

Nikolai A. Sobolev — Prof., Dr. Rer. Nat. 

Aveiro 3810-193.



References

1. Serrate D., De Teresa J. M., Ibarra M. R. Double perovskites with ferromagnetism above room temperature. J. Phys.: Condensed Matter. 2007, vol. 19, pp. 1—86. DOI: 10.1088/0953-8984/19/2/023201

2. Topwal D., Sarma D. D., Kato H., Tokura Y., Avignon M. Structural and magnetic properties of Sr2Fe1+xMo1−xO6. Phys. Rev. B. 2006, vol. 73, pp. 0944191—0944195. DOI: 10.1103/PhysRevB.73.094419

3. Ferreira N. M., Kovalevsky A. V., Naumovich E. N., Yaremchenko A. A., Zakharchuk K. V., Costa F. M., Frade J. R. Effects of transition metal additives on redox stability and high−temperature electrical conductivity of (Fe,Mg)3O4 spinels. J. European Ceram. Society. 2014, vol. 34, no. 10, pp. 2339—2350. DOI: 10.1016/j.jeurceramsoc.2014.02.016

4. Chana T. S., Liua R. S., Hub S. F., Linc J. G. Structure and physical properties of double perovskite compounds Sr2FeMO6 (M = Mo, W). Mater. Chem. Phys. 2005, vol. 93, no. 2–3, pp. 314—319. DOI: 10.1016/j.matchemphys.2005.03.060

5. Markov A. A., Savinskaya O. A., Patrakeev M. V., Nemudry A. P., Leonidov I. A., Pavlyukhin Yu. T., Ishchenko A. V., Kozhevnikov V. L. Structural features, nonstoichiometry and high− temperature transport in SrFe1−xMoxO3−δ. J. Solid State Chem. 2009. vol. 182, no. 4, pp. 799—806. DOI: 10.1016/j.jssc.2008.12.026

6. Klencsár Z., Németh Z., Vértes A., Kotsis I., Nagy M., Cziráki Á., Ulhaq−Bouillet C., Pierron−Bohnes V., Vad K., Mészáros S., Hakl J. The effect of cation disorder on the structure of Sr2FeMoO6 double perovskite. J. Magn. Magn. Mater. 2004, vol. 281, pp. 115—123. DOI: 10.1016/j.jmmm.2004.04.097

7. Rager J., Zipperle M., Sharma A., MacManus−Driscoll J. L. Oxygen stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO–Fe3O4– MoO3. J. American Ceram. Society. 2004, vol. 87, pp. 1330—1335. DOI: 10.1111/j.1151-2916.2004.tb07730.x

8. Sarma D. D., Mahadevan P., Ray S., Kumar A. Electronic Structure of Sr2FeMoO6. Phys. Rev. Lett. 2000, vol. 85, no. 12, pp. 2549—2552. DOI: 10.1103/PhysRevLett.85.2549

9. Menéndez N., García−Hernández M., Sánchez D., Tornero J. D., Martínez J. L., Alonso J. A. Charge transfer and disorder in double perovskites. Chemistry of Materials. 2004, vol. 16, pp. 3565— 3572. DOI: 10.1021/cm049305t

10. Kalanda N. A., Kovalev L. V., Waerenborgh J. C., Soares M. R., Zheludkevich M. L., Yarmolich M. V., Sobolev N. A. Interplay of superstructural ordering and magnetic properties of the Sr2FeMoO6−δ double perovskite. Sci. Adv. Mater. 2015, vol. 7, pp. 446—454. DOI: 10.1166/sam.2015.2134

11. Fix T., Barla A., Ulhaq−Bouillet C., Colis S., Kappler J. P., Dinia A. Absence of tunnel magnetoresistance in Sr2FeMoO6−based magnetic tunnel junctions. Chem. Phys. Lett. 2007, vol. 434, pp. 276— 279. DOI: 10.1016/j.cplett.2006.12.020

12. Zhou J. P., Dass R., Yin H. Q., Zhou J.−S., Rabenberg L., Goodenough J. B. Enhancement of room temperature magnetoresistance in double perovskite ferrimagnets. J. Appl. Phys. 2000, vol. 87, pp. 5037—5039. DOI: 10.1063/1.373240

13. Huang Y. H., Lindén J., Yamauchi H., Karppinen M. Large low−field magnetoresistance effect in Sr2FeMoO6 homocomposites. J. Appl. Phys. 2005, vol. 87, pp. 0725101—07251013. DOI: 10.1063/1.1864241

14. Harnagea L., Jurca B., Berthet P. Low−field magnetoresistance up to 400 K in double perovskite Sr2FeMoO6 synthesized by a citrate route. J. Solid State Chem. 2014, vol. 211, pp. 219—226. DOI: 10.1016/j.jssc.2014.01.001

15. Yarmolich M., Kalanda N., Demyanov S., Terryn H., Ustarroz J., Silibin M., Gorokh G. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6−δ nanopowders formed by citrate−gel method. Beilstein Journal of Nanotechnology. 2016, vol. 7, pp. 1202—1207. DOI: 10.3762/bjnano.7.111

16. Yarmolich M. V., Kalanda N. A., Yaremchenko A. A., Gavrilov S. A., Dronov A. A., Silibin M. V. Sequence of phase transformations and inhomogeneous magnetic state in nanosized Sr2FeMoO6−δ. Inorg. Mater. 2017, vol. 53, no. 1, pp. 70—76. DOI: 10.1134/S0020168517010186

17. Gantmakher V. F. Elektrony v neuporyadochennykh sredakh [Electrons in disordered media]. Moscow, Fizmatlit, 2013. 288 p. (In Russ.).

18. Gantmakher V. F. Electrons and disorder in solids. Oxford; New York: Oxford University Press, 2005. DOI: 10.1093/acprof:oso/9780198567561.001.0001

19. Shklovski B. I., Efros A. L. Elektronnye svoistva legirovannykh poluprovodnikov [Electronic properties of doped semiconductors]. Moscow: Nauka, 1979. 416 p. (In Russ.).

20. Mitani S., Fujimori H., Ohnuma S. Spin−dependent tunneling phenomena in insulating granular systems. J. Magn. Magn. Mater. 1997, vol. 165, pp. 141—148. DOI: 10.1016/S03048853(96)00490-8

21. Fujimori H., Mitani S., Ohnuma S. Tunnel−type GMR in metal−nonmetal granular alloy thin films. Materials Science and Engineering: B. 1995, vol. 31, no. 1−2, pp. 219—223. DOI: 10.1016/09215107(94)08032-1

22. Mitani S., Fujimori H., Takanashi K. Tunnel MR and spin electronics in metal−nonmetal granular systems. J. Magn. Magn. Mater. 1999, vol. 198—199, pp. 179−184. DOI: 10.1016/S03048853(98)01041-5

23. Efros A. L., Shklovski B. I. Critical behaviour of conductivity and dielectric constant near the metal−non−metal transition threshold. Phys. status solidi (b). 1976, vol. 76, no. 2, pp. 475—485. DOI: 10.1002/pssb.2220760205

24. Slonczewski J. Current−driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, vol. 159, no. 1−2, pp. L1—L7. DOI: 10.1016/0304-8853(96)00062-5

25. Slonczevski J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B. 1989, vol. 39, no. 10, pp. 6995—7002. DOI: 10.1103/PhysRevB.39.6995


Review

For citations:


Yarmolich M.V., Kalanda N.A., Svito I.A., Zhaludkevich A.L., Sobolev N.A. Magnetoresistance in nanosize strontium ferromolybdate with dielectric interlayers. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(3):149-155. (In Russ.) https://doi.org/10.17073/1609-3577-2016-3-149-155

Views: 901


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)