Obtaining a copper selenide base material by powder metallurgy methods
https://doi.org/10.17073/1609-3577-2016-3-163-169
Abstract
About the Authors
A. A. IvanovRussian Federation
78 Prospekt Vernadskogo, Moscow 119454; 5–1 B. Tolmachevsky Per., Moscow 119017.
V. B. Osvenskii
Russian Federation
5–1 B. Tolmachevsky Per., Moscow 119017.
A. I. Sorokin
Russian Federation
5–1 B. Tolmachevsky Per., Moscow 119017.
V. P. Panchenko
Russian Federation
4 Leninsky Prospekt, Moscow 119049.
L. P. Bulat
Russian Federation
9 Lomonosov Str., St. Petersburg 191002.
R. Kh. Akchurin
Russian Federation
78 Prospekt Vernadskogo, Moscow 119454.
References
1. Snyder G. J., Toberer E. S. Complex thermoelectric materials. Nature Materials, 2008, vol. 7, pp. 105—114. DOI: 10.1038/nmat2090
2. Sootsman J. R., Chung D. Y., Kanatzidis M. G. New and old concepts in thermoelectric materials. Angewandte Chemie International Edition, 2009, vol. 48, no. 46. pp. 8616—8639. DOI: 10.1002/anie.200900598
3. Bulat L. P., Bublik V. T., Drabkin I. A., Karatayev V. V., Osvenskii V. B., Parkhomenko Yu. N., Pivovarov G. I., Pshenai−Severin D. A., Tabachkova N. Yu. Bulk nanostructured polycrystalline p−Bi—Sb—Te thermoelectrics obtained by mechanical activation method with hot pressing. J. Electronic Mater., 2010, vol. 39, no. 9, pp. 1650—1653. DOI: 10.1007/s11664-010-1250-0
4. Minnich A., Dresselhaus M., Ren Z., Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci., 2009, vol. 2, no. 5, pp. 466—479. DOI: 10.1039/B822664B
5. Ma Y., Hao Q., Poudel B., Lan Y., Yu B., Wang D., Chen G., Ren Z. Enhanced thermoelectric figure−of−merit in p−type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett., 2008, vol. 8, no. 8, pp. 2580—2584. DOI: 10.1021/nl8009928
6. Hicks L., Harman T., Sun X., Dresselhaus M. Experimental study of the effect of quantum−well structures on the thermoelectric figure of merit. Phys. Rev. B, Condensed matter, 1996, vol. 53, no. 16, pp. R10493—R10496. DOI: 10.1103/PhysRevB.53.R10493
7. Glazov V. M., Pashinkin A. S., Fedorov V. A. Phase equilibria in the Cu—Se system. Inorganic Materials, 2000, vol. 36, no. 7, pp. 641—652. DOI: 10.1007/BF02758413
8. Yamamoto K., Kashida S. X−ray study of the average structures of Cu2Se and Cu1.8S in the room temperature and the high temperature phases. J. Solid State Chem., 1991, vol. 93, no. 1, pp. 202—211. DOI:10.1016/0022-4596(91)90289-T
9. Liu H., Shi X., Xu F., Zhang L., Zhang W., Chen L., Li Q., Uher C., Day T., Snyder G. J. Copper ion liquid−like thermoelectrics. Nature Materials, 2012, vol. 11. pp. 422—425. DOI: 10.1038/nmat3273
10. Kim H., Ballikaya S., Chi H., Ahn J.−P., Ahn K., Uher C., Kaviany M. Ultralow thermal conductivity of β−Cu2Se by atomic fluidity and structure distortion. Acta Materialia, 2015, vol. 86, pp. 247—253. DOI: 10.1016/j.actamat.2014.12.008
11. Yu B., Liu W., Chen S., Wang Hu., Wang H., Chen G., Ren Z. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy, 2012, vol. 1, no. 3. pp. 472—478. DOI: 10.1016/j.nanoen.2012.02.010
12. Tyagi K., Gahtori B., Bathula S., Jayasimhadri M., Singh N. K., Sharma S., Haranath D., Srivastava A. K, Dhar A. Enhanced thermoelectric performance of spark plasma sintered copper−deficient nanostructured copper selenide. J. Physics and Chemistry of Solids, 2015, vol. 81, pp. 100—105. DOI: 10.1016/j.jpcs.2015.01.018
13. Ballikaya S., Chi H., Salvador J. R., Uher C. Thermoelectric properties of Ag−doped Cu2Se and Cu2Te. J. Mater. Chem. A, 2013, vol. 1, no. 40, pp. 12478—12484. DOI: 10.1039/C3TA12508D
14. Yang L., Chen Z.−G., Hana G., Hong M., Zou Y., Zou J. High−performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nano Energy, 2015, vol. 16, pp. 367—374. DOI: 10.1016/j.nanoen.2015.07.012
15. Gahtori Bh., Bathula S., Tyagi K., Jayasimhadri M., Srivastava A. K., Singh S., Budhani R. C., Dhar A. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, vol. 13, pp. 36—46. DOI: 10.1016/j.nanoen.2015.02.008.
16. Machado K. D., de Lima J. C., Grandi T. A., Campos C. E. M., Maurmann C. E., Gasperini A. A. M., Souza S. M., Pimenta A. F. Structural study of Cu2−xSe alloys produced by mechanical alloying. Acta Crystallographica Section B. Structural Science, 2004, vol. 60, no. 3, pp. 282—286. DOI: 10.1107/S0108768104007475
17. Sabo Y. P. Technology of chalcogen thermoelements. Physical foundations. Ch. 2. Technology of thermoelectric materials. 2.3. Pressing. J. Thermoelectricity. 2005, no. 1 pp. 48—59.
18. Bulat L. P., Pshenai−Severin D. A., Karatayev V. V., Osvenskii V. B., Parkhomenko Yu. N., Lavrentev M. G., Sorokin A. I., Blank V. D., Pivovarov G. I., Bublik V. T., Tabachkova N. Yu. Ch. 21. Bulk nanocrystalline thermoelectrics based on Bi—Sb—Te solid solution. In book: The Delivery of Nanoparticles. Ed. by A. A. Hashim. InTech, 2012, pp. 454—486. DOI: 10.5772/34829
19.
Review
For citations:
Ivanov A.A., Osvenskii V.B., Sorokin A.I., Panchenko V.P., Bulat L.P., Akchurin R.Kh. Obtaining a copper selenide base material by powder metallurgy methods. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(3):163-169. (In Russ.) https://doi.org/10.17073/1609-3577-2016-3-163-169