Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Obtaining a copper selenide base material by powder metallurgy methods

https://doi.org/10.17073/1609-3577-2016-3-163-169

Abstract

Copper selenide is a promising material for power generation in medium−temperature range 600—1000 K. A number of features of the Cu—Se system, i.e. the existence of a phase transition in Cu2Se compound, the high speed of Cu ion diffusion and the high vapor pressure of Se at high temperatures, necessitate massive experimental investigations aimed to develop and optimize a method for obtaining a copper selenide base bulk material. In this work the effect of mechanochemical synthesis mode and subsequent compaction method on the thermoelectric properties and structure of copper selenide were studied. The source material was obtained by mechanochemical synthesis. The hot pressing and spark plasma sintering methods were used for obtaining the bulk samples. The structure and phase composition were studied by X−ray diffraction and scanning electron microscopy. We show that increasing the time of mechanochemical synthesis to 5 hours leads to copper depletion of the powders and the formation of nonstoichiometric phase Cu1,83Se which persists after spark plasma sintering. Comparison of the structure and properties of the material obtained by spark plasma sintering and hot pressing showed that the material obtained by hot pressing has a greater degree of the grain defects. The highest thermoelectric efficiency ZT = 1.8 at 600 °C was observed in the material obtained by spark plasma sintering. We show that the main factor affecting the value of the thermoelectric efficiency ZT of the studied materials is the low thermal conductivity. The difference in thethermal conductivities of the materials obtained by different methods is attributed to the electronic component of thermal conductivity.

About the Authors

A. A. Ivanov
Moscow Technological University (MIREA); JSC «Giredmet».
Russian Federation

 

78 Prospekt Vernadskogo, Moscow 119454; 5–1 B. Tolmachevsky Per., Moscow 119017.



V. B. Osvenskii
JSC «Giredmet».
Russian Federation
5–1 B. Tolmachevsky Per., Moscow 119017.


A. I. Sorokin
JSC «Giredmet».
Russian Federation
5–1 B. Tolmachevsky Per., Moscow 119017.


V. P. Panchenko
JSC «Giredmet»; National University of Science and Technology MISiS.
Russian Federation
4 Leninsky Prospekt, Moscow 119049.


L. P. Bulat
ITMO University, St. Petersburg.
Russian Federation
9 Lomonosov Str., St. Petersburg 191002.


R. Kh. Akchurin
Moscow Technological University (MIREA).
Russian Federation
78 Prospekt Vernadskogo, Moscow 119454.


References

1. Snyder G. J., Toberer E. S. Complex thermoelectric materials. Nature Materials, 2008, vol. 7, pp. 105—114. DOI: 10.1038/nmat2090

2. Sootsman J. R., Chung D. Y., Kanatzidis M. G. New and old concepts in thermoelectric materials. Angewandte Chemie International Edition, 2009, vol. 48, no. 46. pp. 8616—8639. DOI: 10.1002/anie.200900598

3. Bulat L. P., Bublik V. T., Drabkin I. A., Karatayev V. V., Osvenskii V. B., Parkhomenko Yu. N., Pivovarov G. I., Pshenai−Severin D. A., Tabachkova N. Yu. Bulk nanostructured polycrystalline p−Bi—Sb—Te thermoelectrics obtained by mechanical activation method with hot pressing. J. Electronic Mater., 2010, vol. 39, no. 9, pp. 1650—1653. DOI: 10.1007/s11664-010-1250-0

4. Minnich A., Dresselhaus M., Ren Z., Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci., 2009, vol. 2, no. 5, pp. 466—479. DOI: 10.1039/B822664B

5. Ma Y., Hao Q., Poudel B., Lan Y., Yu B., Wang D., Chen G., Ren Z. Enhanced thermoelectric figure−of−merit in p−type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett., 2008, vol. 8, no. 8, pp. 2580—2584. DOI: 10.1021/nl8009928

6. Hicks L., Harman T., Sun X., Dresselhaus M. Experimental study of the effect of quantum−well structures on the thermoelectric figure of merit. Phys. Rev. B, Condensed matter, 1996, vol. 53, no. 16, pp. R10493—R10496. DOI: 10.1103/PhysRevB.53.R10493

7. Glazov V. M., Pashinkin A. S., Fedorov V. A. Phase equilibria in the Cu—Se system. Inorganic Materials, 2000, vol. 36, no. 7, pp. 641—652. DOI: 10.1007/BF02758413

8. Yamamoto K., Kashida S. X−ray study of the average structures of Cu2Se and Cu1.8S in the room temperature and the high temperature phases. J. Solid State Chem., 1991, vol. 93, no. 1, pp. 202—211. DOI:10.1016/0022-4596(91)90289-T

9. Liu H., Shi X., Xu F., Zhang L., Zhang W., Chen L., Li Q., Uher C., Day T., Snyder G. J. Copper ion liquid−like thermoelectrics. Nature Materials, 2012, vol. 11. pp. 422—425. DOI: 10.1038/nmat3273

10. Kim H., Ballikaya S., Chi H., Ahn J.−P., Ahn K., Uher C., Kaviany M. Ultralow thermal conductivity of β−Cu2Se by atomic fluidity and structure distortion. Acta Materialia, 2015, vol. 86, pp. 247—253. DOI: 10.1016/j.actamat.2014.12.008

11. Yu B., Liu W., Chen S., Wang Hu., Wang H., Chen G., Ren Z. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy, 2012, vol. 1, no. 3. pp. 472—478. DOI: 10.1016/j.nanoen.2012.02.010

12. Tyagi K., Gahtori B., Bathula S., Jayasimhadri M., Singh N. K., Sharma S., Haranath D., Srivastava A. K, Dhar A. Enhanced thermoelectric performance of spark plasma sintered copper−deficient nanostructured copper selenide. J. Physics and Chemistry of Solids, 2015, vol. 81, pp. 100—105. DOI: 10.1016/j.jpcs.2015.01.018

13. Ballikaya S., Chi H., Salvador J. R., Uher C. Thermoelectric properties of Ag−doped Cu2Se and Cu2Te. J. Mater. Chem. A, 2013, vol. 1, no. 40, pp. 12478—12484. DOI: 10.1039/C3TA12508D

14. Yang L., Chen Z.−G., Hana G., Hong M., Zou Y., Zou J. High−performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nano Energy, 2015, vol. 16, pp. 367—374. DOI: 10.1016/j.nanoen.2015.07.012

15. Gahtori Bh., Bathula S., Tyagi K., Jayasimhadri M., Srivastava A. K., Singh S., Budhani R. C., Dhar A. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, vol. 13, pp. 36—46. DOI: 10.1016/j.nanoen.2015.02.008.

16. Machado K. D., de Lima J. C., Grandi T. A., Campos C. E. M., Maurmann C. E., Gasperini A. A. M., Souza S. M., Pimenta A. F. Structural study of Cu2−xSe alloys produced by mechanical alloying. Acta Crystallographica Section B. Structural Science, 2004, vol. 60, no. 3, pp. 282—286. DOI: 10.1107/S0108768104007475

17. Sabo Y. P. Technology of chalcogen thermoelements. Physical foundations. Ch. 2. Technology of thermoelectric materials. 2.3. Pressing. J. Thermoelectricity. 2005, no. 1 pp. 48—59.

18. Bulat L. P., Pshenai−Severin D. A., Karatayev V. V., Osvenskii V. B., Parkhomenko Yu. N., Lavrentev M. G., Sorokin A. I., Blank V. D., Pivovarov G. I., Bublik V. T., Tabachkova N. Yu. Ch. 21. Bulk nanocrystalline thermoelectrics based on Bi—Sb—Te solid solution. In book: The Delivery of Nanoparticles. Ed. by A. A. Hashim. InTech, 2012, pp. 454—486. DOI: 10.5772/34829

19.


Review

For citations:


Ivanov A.A., Osvenskii V.B., Sorokin A.I., Panchenko V.P., Bulat L.P., Akchurin R.Kh. Obtaining a copper selenide base material by powder metallurgy methods. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(3):163-169. (In Russ.) https://doi.org/10.17073/1609-3577-2016-3-163-169

Views: 1090


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)