Anisotropic mechanical properties and hardening mechanisms in ZrO2–Y2O3 solid solution crystals
https://doi.org/10.17073/1609-3577-2016-3-170-178
Abstract
Abstract. The anisotropy of the mechanical properties of single crystal ZrO2 — 2.8 mol.% Y2O3 solid solutions has been studied. The crystals have been grown by skull melting technique. The microhardness and fracture toughness have been tested for different crystallographic planes by indentation with different indenter diagonal orientations. The study shows that the microhardness of the material depends on the crystallographic orientation but slightly whereas the fracture toughness varies for different planes. The maximum fracture toughness has been observed in the crystal specimen cut laterally to the <100> orientation. We have studied the anisotropy of the microhardness in the material for different indenter diagonal orientations. The maximum fracture toughness has been obtained for the {100} plane and the <100> indenter diagonal orientation. The phase composition inside and outside the indents on the {100}, {110} and {111} surfaces for 20, 3 and 1 N loads has been studied in local areas using Raman spectroscopy. The degree of the tetragonal−monoclinic transition has been evaluated for different crystallographic planes and different indenter diagonal orientations. The tetragonal−monoclinic transition proves to be anisotropic, and this affects the transformation hardening mechanism. The maximum amount of the monoclinic phase is present in the vicinity of the indent in the {100} plane for the <100> indenter diagonal orientation. The highest fraction toughness has also been observed in the {100} plane for the <100> indenter diagonal orientation. Probably, the abovementioned indenter diagonal orientation provides for the maximum stress concentration along the coherent conjugation planes between the tetragonal and the monoclinic phases during the tetragonal−monoclinic transition, i.e. (100)t||(100)m and [001]t||[010]m.
About the Authors
M. A. BorikRussian Federation
38 Vavilov Str., Moscow 119991.
V. R. Borichevskij
Russian Federation
38 Vavilov Str., Moscow 119991; 4 Leninsky Prospekt, Moscow 119049.
V. T. Bublik
Russian Federation
4 Leninsky Prospekt, Moscow 119049.
T. V. Volkova
Russian Federation
68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia.
A. V. Kulebyakin
Russian Federation
38 Vavilov Str., Moscow 119991.
E. E. Lomonova
Russian Federation
38 Vavilov Str., Moscow 119991.
F. O. Milovich
Russian Federation
4 Leninsky Prospekt, Moscow 119049.
V. A. Myzina
Russian Federation
38 Vavilov Str., Moscow 119991.
P. A. Ryabochkina
Russian Federation
68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia.
S. V. Seryakov
Russian Federation
4 Leninsky Prospekt, Moscow 119049.
N. Yu. Tabachkova
Russian Federation
4 Leninsky Prospekt, Moscow 119049.
References
1. Zebarjadi M., Esfarjani K., Dresselhaus M. S., Ren Z. F., Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy and Environmental Sci., 2012, vol. 5, pp. 5147—5162. DOI: 10.1039/C1EE02497C
2. Gogotsi G. A., Lomonova E. E., Osiko V. V. Study of the mechanical characteristics of single crystals of zirconia, intended for structural applications. Ogneupory, 1991, no. 8, pp. 14—17. (In Russ.)
3. Ingel R. P., Lewis (III) D. Elastic Anisopropy in zirconia single crystals. J. Amer. Ceram. Soc., 1988, vol. 71, no. 4, pp. 265—271. DOI: 10.1111/j.1151-2916.1988.tb05858.x
4. Bolon A. M., Gentleman M. M. Raman spectroscopic observations of ferroelastic switching in ceria−stabilized zirconia. J. Amer. Ceram. Soc., 2011, vol. 94, no. 12, pp. 4478—4482. DOI: 10.1111/j.15512916.2011.04737.x
5. Mercer C., Williams J. R., Clarke D. R., Evans A. G. On a ferroelastic mechanism governing the toughness of metastable tetragonal−prime (t′) yttria−stabilized zirconia. Proc. Royal Soc. A, 2007, vol. 463, pp. 1393—1408. DOI: 10.1098/rspa.2007.1829
6. Virkar A. V. Pole of ferroelasticity in toughening of zirconia ceramics. Key Engineering Materials Vols., 1998, vol. 153–154, pp. 183—210. DOI: 10.4028/www.scientific.net/KEM.153-154.183
7. Gaillard Y., Anglada M., Jimenez−Piquea E. Nanoindentation of yttria−doped zirconia: Effect of crystallographic structure on deformation mechanisms. J. Mater. Res., 2009, vol. 24, no. 3, pp. 719—727. DOI: 10.1557/jmr.2009.0091
8. Hannink R. H. J., Kelly P. M., Muddle B. C. Transformation toughening in zirconia−containing ceramics. J. Amer. Ceram. Soc., 2000, vol. 83, no. 3, pp. 461—487. DOI: 10.1111/j.1151-2916.2000. tb01221.x
9. Chevalier J., Gremillardw L., Virkar A. V., Clarke D. R. The tetragonal−monoclinic transformation in zirconia: Lessons learned and future trends. J. Amer. Ceram. Soc., 2009, vol. 92, no. 9, pp. 1901— 1920. DOI: 10.1111/j.1551-2916.2009.03278.x
10. Martinez−Fernandez J., Jimenez−Melendo M., Dominguez− Rodriguez A., Heuer A. H. Microindentation−Induced Transfor mation in 3.5−mol%−yttria−partially−stabilized zirconia single crystals. J. Amer. Ceram. Soc., 1991, vol. 75, no. 5, pp. 1071—1081. DOI: 10.1111/j.1151-2916.1991.tb04345.x
11. Morscher G. N., Pirouz P., Heuer A. H. Temperature Dependence of Hardness in yttria−stabilized zirconia single crystals. J. Amer. Ceram. Soc., 1991, vol. 74, no. 3, pp. 491—500. DOI: 10.1111/j.1151-2916.1991.tb04049.x
12. Otsuka K., Matsunaga K., Nakamura A., Ii S., Kuwabara A., Yamamoto T., Ikuhara Y. effects of dislocations on the oxygen ionic conduction in yttria stabilized zirconia. Materials Transactions, 2004, vol. 45, no. 7, pp. 2042—2047. DOI: 10.2320/matertrans.45.2042
13. Frolov K. V., Osiko V. V., Alisin V. V., Vishnyakova M. A., Ignateva Z. V., Lomonova E. E., Melshanov A. F., Moskvitin G. V., Pavlov V. G., Pugachev M. S. Investigation of the mechanical and tribological properties of a new generation of nanocrystalline material based on zirconia. Problemy Mashinostroeniya i Nadezhnosti Mashin = Journal of Machinery Manufacture and Reliability, 2006, no. 4, pp. 3—8. (In Russ.)
14. Saiki A., Ishizawa N., Mizutani N., Kato M. SEM observation of the stress−induced transformation by Vickers indentation in Y−PSZ crystals. J. Ceram. Soc. Jpn., 1989, vol. 97, no. 1, pp. 43—48. DOI: 10.2109/jcersj.97.43
15. Gogotsi G., Ostrovoy D. Indentation fracture of Y2O3−partially stabilized ZrO2 crystals. J. Mater. Sci. Lett., 1995, vol. 14, no. 20, pp. 1406—1409. DOI: 10.1007/BF00462198
16. Muñoz A., Gómez Garcı́a D., Domı́nguez−Rodrı́guez A., Wakai F. High temperature plastic anisotropy of Y2O3 partially stabilized ZrO2 single crystals. J. Europ. Ceram. Soc., 2002, vol. 22, no. 1, pp. 2609—2613. DOI: 10.1016/S0955-2219(02)00123-1
17. Baither D., Bartsch M., Baufeld B., Tikhonovsky A., Foitzik A., Ruhle M., Messerschmidt U. ferroelastic and plastic deformation of t’−zirconia single crystals. J. Amer. Ceram. Soc., 2001, vol. 84, no. 8, pp. 1755—1762. DOI: 10.1111/j.1151-2916.2001.tb00911.x
18. Borik M. A., Bublik V. T., Kulebyakin A. V., Lomonova E. E., Milovich F. O., Myzina V. A., Osiko V. V., Tabachkova N. Yu. Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content. J. Alloys and Compounds, 2014, vol. 586, pp. 231—235. DOI: 10.1016/j.jallcom.2013.01.126
19. Borik M. A., Bublik V. T., Kulebyakin A. V., Lomonova E. E., Milovich F. O., Myzina V. A., Osiko V. V., Seryakov S. V., Tabachkova N. Y. Change in the phase composition, structure and mechanical properties of directed melt crystallised partially stabilised zirconia crystals depending on the concentration of Y2O3. J. Europ. Ceram. Soc., 2015, vol. 35, no. 6, pp. 1889—1894. DOI: 10.1016/j.jeurceramsoc.2014.12.012
20. Osiko V. V., Borik M. A., Lomonova E. E. Synthesis of refractory materials by skull melting technique. Handbook of Crystal Growth. Berlin; Heidelberg: Springer−Verlag, 2010. Pt. B, pp. 433— 477. DOI: 10.1007/978-3-540-74761-1_14
21. Alisin V. V., Borik M. A., Lomonova E. E., Melshanov A. F., Moskvitin G. V., Osiko V. V., Panov V. A., Pavlov V. G., Vishnjakova M. A. Zirconia−bazed nanocrystalline synthesized by directional crystallization from the melt. Mater. Sci. Eng.: C, 2005, vol. 25, pp. 577—583. DOI: 10.1016/j.msec.2005.07.003
22. Borik M. A., Bublik V. T., Kulebyakin A. V., Lomonova E. E., Myzina V. A., Milovich F. O., Tabachkova N. Y. Methodological features of studying partially stabilized zirconia crystals. Zavodskaya Laboratoriya. Diagnostika Materialov = Industrial Laboratory. Materials Diagnostics, 2012, vol. 78, no. 7, pp. 26—30. (In Russ.)
23. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564—1583. DOI: 10.1557/JMR.1992.1564
24. Jang B.−K. Influence of low indentation load on Young’s modulus and hardness of 4 mol% Y2O3–ZrO2 by nanoindentation. J. Alloys and Compounds, 2006, vol. 426, no. 1–2, pp. 312—315. DOI: 10.1016/j.jallcom.2006.01.086
25. Deville S., Chevalier J., Attaoui H. Atomic force microscopy study and qualitative analysis of martensite relief in zirconia. J. Amer. Ceram. Soc., 2005, vol. 88, no. 5, pp. 1261—1267. DOI: 10.1111/j.15512916.2005.00174.x
Review
For citations:
Borik M.A., Borichevskij V.R., Bublik V.T., Volkova T.V., Kulebyakin A.V., Lomonova E.E., Milovich F.O., Myzina V.A., Ryabochkina P.A., Seryakov S.V., Tabachkova N.Yu. Anisotropic mechanical properties and hardening mechanisms in ZrO2–Y2O3 solid solution crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(3):170-178. (In Russ.) https://doi.org/10.17073/1609-3577-2016-3-170-178