Evolution of models and algorithms for parameter calculation in micro- and nanoelectronics materials technology
https://doi.org/10.17073/1609-3577-2016-3-179-188
Abstract
Results of developing a system of models and algorithms for parameter calculation in micro and nanoelectronics materials processes and equipment design have been considered. A distinctive feature of the teaching methods for special technological courses on electronics materials is that the courses are designed by analogy with electronics materials technologies: from a bulk single crystal to device structures the typical dimensions of which are within several
tens of nanometers. A scientific model approach to the solution of technological problems has been developed during the study of heat and mass transfer processes which, along with the interaction processes in liquids and gas and with account of the heterogeneous reactions, are the theoretical basis of the electronics materials technology. The possibilities of physical and mathematical modeling have been compared. Approaches to the creation of mathematical models for the single crystals growth processes of semiconductors, epitaxial layers and heterostructures have been considered and their possible practical applications have been outlined. We show that the ideas put forward by V.V. Krapukhin at early stages of training specialists in electronics materials technology and further developed by his students have formed the basis for the training of several generations of highly skilled specialists
About the Authors
V. V. KrapukhinRussian Federation
4 Leninsky Prospekt, Moscow 119049.
V. G. Kosushkin
Russian Federation
5 Baumanskaya 2-ya Str., Moscow 105005.
L. V. Kozhitov
Russian Federation
4 Leninsky Prospekt, Moscow 119049.
V. G. Kostishin
Russian Federation
4 Leninsky Prospekt, Moscow 119049.
D. G. Muratov
Russian Federation
4 Leninsky Prospekt, Moscow 119049.
A. V. Popkova
Russian Federation
33, Zhelyabova Str., Tver 170100.
References
1. Krapukhin V. V., Kuznetsov G. D., Sokolov I. A. Tekhnologiya materialov elektronnoi tekhniki [Technology of electronic materials]. Moscow: Metallurgiya, 1996. 486 p. (In Russ.)
2. Sokolov I. A. Raschety protsessov poluprovodnikovoi tekhnologii [Calculations of the processes of semiconductor technology]. Moscow: Metallurgiya, 1994. 136 p. (In Russ.)
3. Kozhitov L. V., Kosushkin V. G., Krapukhin V. V., Parkhomenko Yu. N. Tekhnologiya materialov mikro− i nanoelektroniki [Technology of materials of micro− and nanoelectronics]. Moscow: MISIS, 2007. 526 p. (In Russ.)
4. Kozhitov L. V., Krapukhin V. V., Ulybin V. A. Tekhnologiya epitaksial’nykh geterokompozitsii [Technology of epitaxial heterocompositions]. Moscow: MISIS, 2001. 156 p. (In Russ.)
5. Kosushkin V. G. Upravlenie rostom kristallov nizkoenergeticheskimi vozdeistviyami [Control of crystal growth by low−energy effects]. Kaluga: Izd. Nauchnoi literatury N. F. Bochkarevoi, 2004. 272 p. (In Russ.)
6. Kozhitov L. V., Blinov I. G. Oborudovanie poluprovodnikovogo proizvodstva [Semiconductor manufacturing equipment]. Moscow: Mashinostroenie, 1986. 264 p. (In Russ.)
7. Skvortsov I. M., Lapidus I. I., Orion B.V., Kozhitov L. V., Anikin V. K. Tekhnologiya i apparatura gazovoi epitaksii kremniya i germaniya [Technology and equipment for gas epitaxy of silicon and germanium]. Moscow: Energiya, 1978. 136 p. (In Russ.)
8. Chernyaev V. N. Kozhitov L. V. Tekhnologiya epitaksial’nykh sloev arsenida galliya i pribory na ikh osnove [Technology of gallium arsenide epitaxial layers and devices based on them]. Moscow: Energiya, 1974. 256 p. (In Russ.)
9. Kozhitov L. V., Lipatov V. V., Timoshin A. S., Volkov M. P. Zhidkofaznaya epitaksiya kremniya [Liquid−phase epitaxy of silicon]. Moscow: Metallurgiya, 1989. 200 p. (In Russ.)
10. Krapukhin V. V., Sokolov I. A., Kuznetsov G. D. Fiziko− khimicheskie osnovy tekhnologii poluprovodnikovykh materialov [Physicochemical basis of semiconductor materials technology]. Moscow: Izdatel’stvo «MISiS», 1995. (In Russ.)
11. Kozhitov L. V., Chichenev N. A., Emel'yanov S. G., Kosushkin V. G. Tekhnologicheskoe vakuumnoe oborudovanie [Technological vacuum equipment]. Kursk: YuZGU, 2014. 552 p. (In Russ.)
12. Golovatyi Yu. P., Kosushkin V. G., Emel’yanov S. G., Chervyakov L. M., Kostishin V. G., Kozhitov L. V., Bebenin V. G. Modeli i algoritmy tekhnologicheskikh protsessov polucheniya novykh materialov [Models and algorithms of technological processes for obtaining new materials]. Kursk: YuZGU, 2014. 282 p. (In Russ.)
13. Kosushkin V. G., Adarchin S. A., Kozhitov L. V., Emel'yanov S. G., Kostishin V. G., Muratov D. G., Chervyakov L. M., Bebenin V. G. Raschety parametrov tekhnologicheskikh protsessov polucheniya novykh materialov [Calculations of parameters of technological processes for obtaining new materials]. Kursk: YuZGU, 2016. 314 p. (In Russ.)
14. Kozhitov L. V., Emel'yanov S. G., Kosushkin V. G., Strel'chenko S. S., Parkhomenko Yu. N., Kozlov V. V., Kozhitov S. L. Tekhnologiya materialov mikro− i nanoelektroniki [Technology of materials of micro− and nanoelectronics]. Kursk: YuZGU, 2012. 862 p. (In Russ.)
15. Karamurzov B. S., Kozhitov L. V., Kosushkin V. G., Strel'chenko S. S., Kozhitov S. L. Modeli, tekhnologii i oborudovanie rosta kristallov i epitaksial’nykh sloev [Models, technologies and equipment for the growth of crystals and epitaxial layers]. Nalchik: Kab.−Balk. un−t, 2011. 334 p. (In Russ.)
16. Mazalov A. V., Sabitov D. R., Kureshov V. A., Padalitsa A. A., Marmalyuk A. A., Akchurin R. Kh. Influence of conditions of growth on structural perfection of layers of AlN received by method MOS−gidridnoy of an epitaxy. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronic Technics. 2013, no. 1, pp. 45—48. (In Russ.). DOI: 10.17073/1609-3577-2013-1-45-48
17. Prostomolotov A. I., Verezub N. A., Ilyasov Kh. Kh. Remote and conjugated modeling of heat−mass transfer and defect formation in technological processes. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronics Engineering. 2015, vol. 18, no. 1, pp. 31—36. (In Russ.). DOI: 10.17073/1609-3577-2015-1-31-36
18. Abgaryan K. K., Volodina O. V., Uvarov S. I. Mathematical modeling of point defect cluster formation in silicon based on molecular dynamic approach. Modern Electronic Materials, 2015, vol. 1, no. 3, pp. 82—87. DOI: 10.1016/j.moem.2016.03.001
19. Philippov M. M., Gribenyukov A. I., Ginsar V. E., Babushkin Yu. V. Application of mathematical model for support of crystal growth process in multizone thermal installations. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronic Technics. 2013, no. 2, pp. 26—31. (In Russ.). DOI: 10.17073/1609-3577-2013-226-31
20. Verezub N. A., Prostomolotov A. I., Berdnikov V. S., Vinokurov V. A. Numerical and experimental study of the influence of thermal processes on the shape of solidification front in Czochralski model for heptadecane and gallium. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronic Technics. 2014, vol. 17, no. 4, pp. 257—267. (In Russ.). DOI: 10.17073/1609-35772014-4-257-267
21. Machlin E. An introduction to aspects of thermodynamics and kinetics relevant to material science. Amsterdam; Boston; Heidelberg; London; New York; Oxford; Paris; San Diego; San Francisco; Singapore; Sydney; Tokyo: Elsevier, 2014. 480 p.
22. Byrappa K., Ohachi T. Crystal Growth Technology. Norwich; New York: William Andrew publishing, 2016. 585 p.
23. Ulrich J., Jones M. J. Heat and mass transfer operations — crystallization. Enciclopedia of the Life Support Systems. Developed under the Auspices of the UNESCO. Oxford (UK): Tolss Publishtrs. URL: http://www.eolss.net/
Review
For citations:
Krapukhin V.V., Kosushkin V.G., Kozhitov L.V., Kostishin V.G., Muratov D.G., Popkova A.V. Evolution of models and algorithms for parameter calculation in micro- and nanoelectronics materials technology. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(3):179-188. (In Russ.) https://doi.org/10.17073/1609-3577-2016-3-179-188