Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Heterostructure buffer layers

https://doi.org/10.17073/1609-3577-2016-3-189-194

Abstract

The problem of choosing the architecture of buffer layers is considered. This is typical problem faced when standard models of different heterostructures with a controlled level of mechanical stresses and low defect density in the bulk and at the layer boundaries are developed. It has been shown that the abovementioned characteristics depend on the quality of the initial substrate surface. They are also dependent on the substrate preparation procedure for epitaxy and the composition of the buffer layers. We note that the quality of the substrate surface is most objectively estimated from the bonding strength of the spliced plates. It has been also shown that if the bonding strength is below 107 Pa (this is the most frequent experimental value), the substrate surface is characterized by noticeable roughness. There are different contaminating elements and chemical compounds, clusters and dust particles, structural defects of different dimensionality on the substrate surface. In addition the substrate surface is restructured so that the «broken» bonds are brought closer to each other. The effect of the real substrate surface structure and the compatibility of the materials on the quality of the epitaxial film has been demonstrated. The analysis provided in this work shows the feasibility of growing a preliminary low−temperature (LT) underlying layer on the substrate for small lattice mismatch. Additional transition layers with changing component ratios in the composition or in the form of superlattices are required for largely differing lattice parameters.

About the Author

V. A. Kharchenko
Dorodnicyn Computing Centre, Federal Research Center «Computer Science and Control» of Russian Academy of Sciences.
Russian Federation

Vyacheslav A. Kharchenko — Dr. Sci. (Eng.), Leading Researcher. 

40 Vavilov Str., Moscow 119333.



References

1. Abgaryan K. K., Kharchenko V. A. The standard model heterostructures for microwave devices. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronic Technics. 2016, vol. 19, no. 1, pp. 47—53. (In Russ.)

2. SEMI M1−0699. Specification for Polished Monocrystalline Silicon Wafers. URL: http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=211&DownloadID=1472 (accessed: 08.09.2016)

3. Kharchenko V. A. Problems of reliability of electronic components. Modern Electronic Materials, 2015, vol. 1, no. 3, pp. 88—92. DOI: 10.1016/j.moem.2016.03.002

4. Suvorov A. L., Bogdanovich B. Yu., Zaluzhnyi A. G., Grafutin V. I., Kalugin V. V., Nesterovich A. V., Prokop’ev E. P., Timoshenkov S. P., Chaplygin Yu. A. Tekhnologii struktur kremnii−na−izolyatore (KNI) [Technologies of SOI structures]. Moscow: MIET, 2004. 408 p. (In Russ.)

5. Tong Q.−Y., Gösele U. Semiconductor wafer bonding. Science and technology. New York: John Wiley & Sons, Inc., 1998. p. 320

6. Zangwill A. Physics at surfaces. Cambridge: Cambridge University Press, 1988. 464 p. DOI: 10.1017/CBO9780511622564

7. Fizika i khimiya poverkhnosti. Kniga I. Fizika poverkhnosti [Physics and chemistry of the surface. Book I. Physics of surface]. Kiev: Institut khimii poverkhnosti im. A. A. Chuiko NAN Ukrainy; LLC «SPE «Interservis», 2015. 588 p. (In Russ.)

8. Pankratov C., Panov V. Surfaces of solids. Nauka i zhizn’, 1986, nos. 5, 6. URL: http://n-t.ru/nj/nz/1986/0501.htm (In Russ.)

9. Braun O. M., Medvedev V. K. Interaction between particles adsorbed on metal surfaces. Sov. Phys. Usp., 1989, vol. 32, pp. 328— 348. DOI: 10.1070/PU1989v032n04ABEH002700

10. Chernov A. A., Givargizov E. I., Bagdasarov Kh. S., Dem’yanets L. N., Kuznetsov V. A., Labochev A. N. Sovremennaya kristallografiya. V 4 t. T. 3: Obrazovanie kristallov [Modern crystallography. In 4 volumes. Vol. 3. Formation of crystals]. Moscow: Nauka, 1980. 401 p. (In Russ.)

11. Sugiura H., Yamaguchi M. Growth of dislocation−free silicon films by molecular beam epitaxy (MBE). J. Vac. Sci. Technol., 1981, vol. 19, no. 12, pp. 157—160. DOI: 10.1116/1.571096

12. Bakhrushin V. E. Poluchenie i fizicheskie svoistva slabolegirovannykh sloev mnogosloinykh kompozitsii [Obtaining and physical properties of weakly doped layers of multilayer compositions]. Zaporozhye (UA): ZIGIU, 2001. 248 p. (In Russ.)

13. Epitaksiya iz gazovoi fazy [Epitaxy from the gas phase]. URL: http://silicon3.narod.ru/epitgaz.htm (In Russ.)

14. Bolkhovityanov Yu. B., Pchelyakov O. P. III−V compounds−on−Si: heterostructure fabrication, application and prospects. The Open Nanoscience Journal, 2009, vol. 2, pp. 20—33. DOI: 10.2174/1874140100903010020

15. Bolkhovityanov Yu. B., Pchelyakov O. P., Sokolov L. V., Chikichev S. I. Artificial GeSi substrates for heteroepitaxy: Achievements and problems. Semiconductors, 2003. vol. 37, no. 5, pp. 493—518. DOI: 10.1134/1.1575352

16. Bolkhovityanov Yu. B., Gutakovskii A. K., Deryabin A. S., Pchelyakov O. P., Sokolov L. V. Potentialities and basic principles of controlling the plastic relaxation of GeSi/Si and Ge/Si films with stepwise variation in the composition. Semiconductors, 2008, vol. 42, no. 1, pp. 1—20. DOI: 10.1007/s11453-008-1001-5

17. Dash W. С. Growth of silicon crystals free from dislocations. J. Appl. Phys., 1959, vol. 30, iss. 4, pp. 459—465. DOI: 10.1063/1.1702390

18. Anishchik V. M., Borisenko V. E., Zhdanok S. A., Tolochko N. K., Fedosyuk V. M. Nanomaterialy i nanotekhnologii [Nanomaterials and nanotechnologies]. Minsk: Izd. tsentr BGU, 2008. 375 p. (In Russ.)

19. Patent 1771335 (RF). Sposob polucheniya epitaksial’nykh struktur na osnove arsenida galliya [Method for obtaining epitaxial structures based on gallium arsenide]. A. A. Zakharov, G. F. Lymar’, M. G. Nesterova, A. E. Shubin, 2000. (In Russ.)


Review

For citations:


Kharchenko V.A. Heterostructure buffer layers. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(3):189-194. (In Russ.) https://doi.org/10.17073/1609-3577-2016-3-189-194

Views: 1180


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)