СЕНСОРНЫЕ СВОЙСТВА УГЛЕРОДНЫХ НАНОТРУБОК
https://doi.org/10.17073/1609-3577-2017-1-5-21
Аннотация
Об авторах
И. В. ЗапороцковаРоссия
Запороцкова Ирина Владимировна — доктор физ.−мат. наук, профессор, директор института приоритетных технологий.
Университетский просп., д. 100, Волгоград, 400062.
Н. П. Борознина
Россия
Борознина Наталья Павловна — кандидат физ.−мат. наук, доцент кафедры судебной экспертизы и физического материаловедения. Университетский просп., д. 100, Волгоград, 400062.
Ю. Н. Пархоменко
Россия
Пархоменко Юрий Николаевич — доктор физ.−мат. наук, профессор, зав. кафедрой материаловедения полупроводников и диэлектриков. Ленинский просп., д. 4, Москва, 119049.
Л. В. Кожитов
Россия
Кожитов Лев Васильевич — доктор техн. наук, профессор, профессор кафедры технологии материалов электроники. Ленинский просп., д. 4, Москва, 119049.
Список литературы
1. Blank V. D., Seepujak A., Polyakov E. V., Batov D. V., Kulnitskiy B. A., Parkhomenko Yu. N., Skryleva E. A., Bangert U., Gutiérrez−Sosa A., Harvey A. J. Growth and characterisation of BNC nanostructures // Carbon. 2009. V. 47, N 14. P. 3167—3174. DOI: 10.1016/j.carbon.2009.07.022
2. Shul'ga Yu. M., Vasilets V. N., Baskakov S. A., Muradyan V. E., Skryleva E. A., Parkhomenko Yu. N. Photoreduction of graphite oxide nanosheets with vacuum ultraviolet radiation // High Energy Chemistry. 2012. V. 46, Iss. 2. P. 117—121. DOI: 10.1134/ S0018143912020099
3. Елисеев А. А., Лукашин А. В. Функциональные наноматериалы. − М.: Физматлит, 2010. − 456 с.
4. Ивановский А. Л. Квантовая химия в материаловедении. Нанотубулярные формы вещества. − Екатеринбург : УрОРАН, 1999. − 176 с.
5. Dresselhaus M. S., Dresselhaus G., Eklund P. C. Science of fullerenes and carbon nanotubes. − New York : Academic Press, Inc., 1996. − 965 p. (https://www.elsevier.com/books/science-of-fullerenes-and-carbon-nanotubes/dresselhaus/978-0-12-221820-0)
6. Saito R., Dresselhaus M. S., Dresselhaus G. Physical properties of carbon nanotubes. − London : Imperial College Press, 1998. − 251 p.
7. Харрис П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века. − М. : Техносфера, 2003. − 336 с.
8. Запороцкова И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: строение и электронные свойства. − Волгоград: Изд−во ВолГУ, 2009. − 490 с.
9. Dresselhaus M. S., Dresselhaus G., Avouris P. Сarbon nanotubes: synthesis, structure, properties, and application. − Springer− Verlag, 2000. − 464 p.
10. Дьячков П. Н. Электронные свойства и применение нанотрубок. − М. : БИНОМ. Лаборатория знаний, 2010. − 488 с.
11. Елецкий А. В. Сорбционные свойства углеродных наноструктур // Успехи физических наук. 2004. Т. 174, № 11. С. 1191— 1231. DOI: 10.3367/UFNr.0174.200411c.1191
12. Ахмадишина К. Ф., Бобринецкий И. И., Комаров И. А., Маловичко А. М., Неволин В. К., Петухов В. А. Гибкие биологические сенсоры на основе пленок УНТ // Российские нанотехнологии. 2013. Т. 8, № 11–12. С. 35—40.
13. Zhang Wei−De, Zhang Wen−Hui. Carbon nanotubes as active components for gas sensors // J. Sensors. 2009. V. 2009. P. 160698. DOI: 10.1155/2009/160698
14. Boyd A., Dube I., Fedorov G., Paranjape M., Barbara P. Gas sensing mechanism of carbon nanotubes: from single tubes to high− density networks // Carbon. 2014. V. 69. P. 417—423. DOI: 10.1016/j. carbon.2013.12.044
15. Zhao J., Buldum A., Han J., Lu J. P. Gas molecule adsorption in carbon nanotubes and nanotube bundles // Nanotechnology. 2002. V. 13, N 2. Р. 195—200. DOI: 10.1088/0957-4484/13/2/312
16. Li J., Lu Y., Ye Q., Cinke M., Han J., Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection // Nano Lett. 2003. V. 3, N 7. P. 929—933. DOI: 10.1021/nl034220x
17. Chen R. J., Franklin N. R., Kong J., Cao J., Tombler Th. W., Zhang Yu., Dai H. Molecular photodesorption from single−walled carbon nanotubes // Appl. Phys Lett. 2001. V. 79, N 14. P. 2258—2260. DOI: 10.1063/1.1408274
18. Kong J., Franklin N. R., Zhou C., Chapline M. G., Peng S., Cho K., Dai H. Nanotube molecular wires as chemical sensors // Science. 2000. V. 287, N 5453. Р. 622—625. DOI: 10.1126/science.287.5453.622
19. Zhang J., Boyd A., Tselev A., Paranjape M., Barbara P. Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors // Appl. Phys. Lett. 2006. V. 88, N 12. P. 123112. DOI: 10.1063/1.2187510
20. Helbling T., Pohle R., Durrer L., Stampferc C., Romana C., Jungena A., Fleischerb M., Hierolda C. Sensing NO2 with individual suspended single−walled carbon nanotubes // Sens. Actuators B: Chem. 2008. V. 132, N 2. P. 491—497. DOI: 10.1016/j.snb.2007.11.036
21. Novak J. P., Snow E. S., Houser E. J., Park D., Stepnowski J. L., McGill R. A. Nerve agent detection using networks of single−walled carbon nanotubes // Appl. Phys. Lett. 2003. V. 83, N 19. P. 4026—4028. DOI: 10.1063/1.1626265
22. Peng N., Zhang Q., Lee Y. C., Tan O. K., Marzari N. Gate modulation in carbon nanotube field effect transistors−based NH3 gas sensors // Sens. Actuators B: Chem. 2008. V. 132, N 1. P. 191—195. DOI: 10.1016/j.snb.2008.01.025
23. Lucci M., Reale A., Di Carlo A., Orlanducci S., Tamburri E., Terranova M. L., Davoli I., Di Natale C., D’Amico A., Paolesse R. Optimization of a NOx gas sensor based on single walled carbon nanotubes // Sens. Actuators B: Chem. 2006. V. 118, N 1–2. P. 226—231. DOI: 10.1016/j.snb.2006.04.027
24. Quang N. H., Van Trinh M., Lee B.−H., Huh J.−S. Effect of NH3 gas on the electrical properties of single−walled carbon nanotube bundles // Sens. Actuators B: Chem. 2006. V. 113, N 1. P. 341—346. DOI: 10.1016/j.snb.2005.03.089
25. Nguyen H.−Q., Huh J.−S. Behavior of single−walled carbon nanotube−based gas sensors at various temperatures of treatment and operation // Sens. Actuators B: Chem. 2006. V. 117, N 2. P. 426—430. DOI: 10.1016/j.snb.2005.11.056
26. Varghese O. K., Kichambre P. D., Gong D., Ong K. G., Dickey E. C., Grimes C. A. Gas sensing characteristics of multi− wall carbon nanotubes // Sens. Actuators B: Chem. 2001. V. 81, N 1. P. 32—41. DOI: 10.1016/S0925-4005(01)00923-6
27. Nguyen L. H., Phi T. V., Phan P. Q., Vu H. N., Nguyen− Duc C., Fossard F. Synthesis of multi−walled carbon nanotubes for NH3 gas detection // Physica E. 2007. V. 37, N 1−2. P. 54—57. DOI: 10.1016/j.physe.2006.12.006
28. Sun G., Liu S., Hua K., Lv X., Huang L., Wang Y. Electrochemical chlorine sensor with multi−walled carbon nanotubes as electrocatalysts // Electrochemistry Communications. 2007. V. 9, N 9. P. 2436—2440. DOI: 10.1016/j.elecom.2007.07.015
29. Piloto C., Mirri F., Bengio E. A., Notarianni M., Gupta B., Shafiei M., Pasquali M., Motta N. Room temperature gas sensing properties of ultrathin carbon nanotube films by surfactant−free dip coating // Sens. Actuators B: Chem. 2016. V. 227. P. 128—134. DOI: 10.1016/j.snb.2015.12.051
30. Valentini L., Cantalini C., Armentano I., Kenny J. M., Lozzi L., Santucci S. Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection // Diamond and Related Materials. 2004. V. 13, N 4–8. P. 1301—1305. DOI: 10.1016/j. diamond.2003.11.011
31. Hoa N. D., Van Quy N., Cho Y., Kim D. An ammonia gas sensor based on non−catalytically synthesized carbon nanotubes on an anodic aluminum oxide template // Sens. Actuators B: Chem. 2007. V. 127, N 2. P. 447—454. DOI: 10.1016/j.snb.2007.04.041
32. Fu D., Lim H., Shi Y., Dong X., Mhaisalkar S. G., Chen Y., Moochhala S., Li L.−J. Differentiation of gas molecules using flexible and all−carbon nanotube devices // J. Phys. Chem. C. 2008. V. 112, N 3. P. 650—653. DOI: 10.1021/jp710362r
33. Tran T. H., Lee J.−W., Lee K., Lee Y. D., Ju B.−K. The gas sensing properties of single−walled carbon nanotubes deposited on an aminosilane monolayer // Sens. Actuators B: Chem. 2008. V. 129, N 1. P. 67—71. DOI: 10.1016/j.snb.2007.07.104
34. Zhou Y., Jiang Y., Xie G., Du X., Tai H. Gas sensors based on multiple−walled carbon nanotubes−polyethylene oxide films for toluene vapor detection // Sens. Actuators B: Chem. 2014. V. 191. P. 24—30. DOI: 10.1016/j.snb.2013.09.079
35. Liu S. F., Lin S., Swager T. M. An organocobalt−carbon nanotube chemiresistive carbon monoxide detector // ACS Sens. 2016. V. 1. N 4. P. 354—357. DOI: 10.1021/acssensors.6b00005
36. Qi P., Vermesh O., Grecu M., Javey A., Wang Q., Dai H., Peng S., Cho K. J. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection // Nano Lett. 2003. V. 3, N 3. P. 347—351. DOI: 10.1021/nl034010k
37. Bekyarova E., Davis M., Burch T., Itkis M. E., Zhao B., Sunshine S., Haddon R. C. Chemically functionalized single−walled carbon nanotubes as ammonia sensors // J. Phys. Chem. B. 2004. V. 108, N 51. P. 19717—19720. DOI: 10.1021/jp0471857
38. Abraham J. K., Philip B., Witchurch A., Varadan V. K., Reddy C. C. A compact wireless gas sensor using a carbon nanotube/ PMMA thin film chemiresistor // Smart Materials and Structures. 2004. V. 13, N 5. P. 1045—1049. DOI: 10.1088/0964-1726/13/5/010
39. Im J., Sterner E. S., Swager T. M. Integrated gas sensing system of swcnt and cellulose polymer concentrator for benzene, toluene, and xylenes // Sensors. 2016. V. 16, N 2. P. 183. DOI: 10.3390/ s16020183
40. Abdelhalim A., Abdellah A., Scarpa G., Lugli P. Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications // Nanotechnology. 2014. V. 25, N 5. P. 055208. DOI: 10.1088/0957-4484/25/5/055208
41. Kong J., Chapline M. G., Dai H. J. Functionalized carbon nanotubes for molecular hydrogen sensors // Adv. Mater. 2001. V. 13, N 18. P. 1384—1386. DOI: 10.1002/1521-4095(200109)13:18<1384::AIDADMA1384>3.0.CO;2-8
42. Sayago I., Terrado E., Aleixandre M., Horrillo M. C., Fernández M. J., Lozano J., Lafuente E., Maser W. K., Benito A. M., Martinez M. T., Gutiérrez J., Muñoz E. Novel selective sensors based on carbon nanotube films for hydrogen detection // Sens. Actuators B: Chem. 2007. V. 122, N 1. P. 75—80. DOI: 10.1016/j.snb.2006.05.005
43. Mubeen S., Zhang T., Yoo B., Deshusses M. A., Myung N. V. Palladium nanoparticles decorated single−walled carbon nanotube hydrogen sensor // J. Phys. Chem. C. 2007. V. 111, N 17. P. 6321—6327. DOI: 10.1021/jp067716m
44. Kumar M. K., Ramaprabhu S. Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor // J. Phys. Chem. B. 2006. V. 110, N 23. P. 11291—11298. DOI: 10.1021/jp0611525
45. Kumar M. K., Ramaprabhu S. Palladium dispersed multiwalled carbon nanotube based hydrogen sensor for fuel cell applications // Int. J. Hydrogen Energy. 2007. V. 32, N 13. P. 2518—2526. DOI: 10.1016/j.ijhydene.2006.11.015
46. Seo S. M., Kang T. J., Cheon J. H., Kim Y. H., Park Y. J. Facile and scalable fabrication of chemiresistive sensor array for hydrogen detection based on gold−nanoparticle decorated SWCNT network // Sens. Actuators B: Chem. 2014. V. 204. P. 716—722. DOI: 10.1016/j.snb.2014.07.119
47. Kamarchuk G. V., Kolobov I. G., Khotkevich A. V., Yanson I. K., Pospelov A. P., Levitsky I. A., Euler W. B. New chemical sensors based on point heterocontact between single wall carbon nanotubes and gold wires // Sens. Actuators B: Chem. 2008. V. 134, N 2. P. 1022—1026. DOI: 10.1016/j.snb.2008.07.012
48. Star A., Joshi V., Skarupo S., Thomas D., Gabriel J.−C. P. Gas sensor array based on metal−decorated carbon nanotubes // J. Phys. Chem. B. 2006. V. 110, N 42. P. 21014—21020. DOI: 10.1021/jp064371z
49. Kwona Y. J., Naa H. G., Kanga S. Y., Choib S.−W., Kimb S. S., Kima H. W. Selective detection of low concentration toluene gas using Pt−decorated carbon nanotubes sensors // Sens. Actuators B: Chem. 2016. V. 227. P. 157—168. DOI: 10.1016/j.snb.2015.12.024
50. Hafaiedh I., Elleuch W., Clement P., Llobet E., Abdelghani A. Multi−walled carbon nanotubes for volatile organic compound detection // Sens. Actuators B: Chem. 2013. V. 182. P. 344—350. DOI: 10.1016/j.snb.2013.03.020
51. Espinosa E. H., Ionescu R., Chambon B., Bedis G., Sotter E., Bittencourt C., Felten A., Pireaux J.−J., Correig X., Llobet E. Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing // Sens. Actuators B: Chem. 2007. V. 127, N 1. P. 137—142. DOI: 10.1016/j.snb.2007.07.108
52. Chen Y., Zhu C., Wang T. The enhanced ethanol sensing properties of multi−walled carbon nanotubes/SnO2 core/shell nanostructures // Nanotechnology. 2006. V. 17, N 12. P. 3012—3017. DOI: 10.1088/0957-4484/17/12/033
53. Wang J., Liu L., Cong S.−Y., Qi J.−Q., Xu B.−K. An enrichment method to detect low concentration formaldehyde // Sens. Actuators B: Chem. 2008. V. 134, N 2. P. 1010—1015. DOI: 10.1016/j. snb.2008.07.010
54. Bittencourt C., Felten A., Espinosa E. H., Ionescu R., Llobet E., Correig X., Pireaux J.−J. WO3 films modified with functionalised multi−wall carbon nanotubes: morphological, compositional and gas response studies // Sens. Actuators B: Chem. 2006. V. 115, N 1. P. 33—41. DOI: 10.1016/j.snb.2005.07.067
55. Wei B.−Y., Hsu M.−C., Su P.−G., Lin H.−M., Wu R.−J., Lai H.−J. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature // Sens. Actuators B: Chem. 2004. V. 101, N 1−2. P. 81—89. DOI: 10.1016/j.snb.2004.02.028
56. Hoa N. D., Quy N. V., Cho Y. S., Kim D. Nanocomposite of SWCNTs and SnO2 fabricated by soldering process for ammonia gas sensor application // Phys. Status Solidi A. 2007. V. 204, N 6. P. 1820—1824. DOI: 10.1002/pssa.200675318
57. Liu Y.−L., Yang H.−F., Yang Y., Liu Z.−M., Shen G.−L., Yu R.−Q. Gas sensing properties of tin dioxide coated onto multiwalled carbon nanotubes // Thin Solid Films. 2006. V. 497, N 1–2. P. 355—360. DOI: 10.1016/j.tsf.2005.11.018
58. van Hieu N., Thuy L. T. B., Chien N. D. Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/ MWCNTs composite // Sens. Actuators B: Chem. 2008. V. 129, N 2. P. 888—895. DOI: 10.1016/j.snb.2007.09.088
59. Sánchez M., Guirado R., Rincón M. E. Multiwalled carbon nanotubes embedded in sol−gel derived TiO2 matrices and their use as room temperature gas sensors // J. Mater. Sci.: Mater. Electron. 2007. V. 18, N 11. P. 1131—1136. DOI: 10.1007/s10854-007-9144-5
60. Van Duy N., van Hieu N., Huy P. T., Chien N. D., Thamilselvan M., Yi J. Mixed SnO2/TiO2 included with carbon nanotubes for gas−sensing application // Physica E. 2008. V. 41, N 2. P. 258—263. DOI: 10.1016/j.physe.2008.07.007
61. Dragoman M., Grenier K., Dubuc D., Bary L., Plana R., Fourn E., Flahaut E. Millimeter wave carbon nanotube gas sensor // J. Appl. Phys. 2007. V. 101, N 10. P. 106103. DOI: 10.1063/1.2734873
62. Adjizian J.−J., Leghrib R., Koos A. A., Suarez−Martinez I., Crossley A., Wagner Ph., Grobert N., Llobet E., Ewels Ch. P. Boron− and nitrogen−doped multi−wall carbon nanotubes for gas detection // Carbon. 2014. V. 66. P. 662—673. DOI: 10.1016/j.carbon.2013.09.064
63. Kim J., Choi S.−W., Lee J.−H., Chung Y., Byun Y. T. Gas sensing properties of defect−induced single−walled carbon nanotubes // Sens. Actuators B: Chem. 2016. V. 228. P. 688—692. DOI: 10.1016/j.snb.2016.01.094
64. Hou Z., Xu D., Cai B. Ionization gas sensing in a microelectrode system with carbon nanotubes // Appl. Phys Lett. 2006. V. 89, N 21. P. 213502. DOI: 10.1063/1.2392994
65. De Heer W. A., Châtelain A., Ugarte D. A carbon nanotube field−emission electron source // Science. 1995. V. 270, N 5239. P. 1179—1180. DOI: 10.1126/science.270.5239.1179
66. de Jonge N., Lamy Y., Schoots K., Oosterkamp T. H. High brightness electron beam from a multi−walled carbon nanotube // Nature. 2002. V. 420, N 6914. P. 393—395. DOI: 10.1038/nature01233
67. Yeow J. T. W., She J. P. M. Carbon nanotube−enhanced capillary condensation for a capacitive humidity sensor // Nanotechnology. 2006. V. 17, N 21. P. 5441—5448. DOI: 10.1088/09574484/17/21/026
68. Snow E. S., Perkins F. K., Houser E. J., Badescu S. C., Reinecke T. L. Chemical detection with a single−walled carbon nanotube capacitor // Science. 2005. V. 307, N 5717. P. 1942—1945. DOI: 10.1126/science.1109128
69. Chopra S., Pham A., Gaillard J., Parker A., Rao A. M. Carbon−nanotube−based resonant−circuit sensor for ammonia // Appl. Phys Lett. 2002. V. 80, N 24. P. 4632—4636. DOI: 10.1063/1.1486481
70. Chopra S., McGuire K., Gothard N., Rao A. M., Pham A. Selective gas detection using a carbon nanotube sensor // Appl. Phys Lett. 2003. V. 83, N 11. P. 2280—2282. DOI: 10.1063/1.1610251
71. Бузановский В. А. Электрохимические сенсоры с углеродными нанотрубьками и их использование в биомедицинских исследованиях // Биомедицинская химия. 2011. Т. 57, вып. 6. С. 12—31. DOI: 10.18097/pbmc20125801012.
72. Barsan M. M., Ghica M. E., Brett C. M. A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes // Analytica Chimica Acta. 2015. V. 881. P. 1—23. DOI: 10.1016/j.aca.2015.02.059
73. Chen A., Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications // Chem. Soc. Rev. 2013. V. 42, N 12. P. 5425—5438. DOI: 10.1039/C3CS35518G
74. Pauliukaite R., Ghica M. E., Barsan M. M., Brett C. M. A. Phenazines and polyphenazines in electrochemical sensors and biosensors // Anal. Lett. 2010. V. 43, N 10–11. P. 1588—1608. DOI: 10.1080/00032711003653791
75. Liu H.−J., Yang D.−W., Liu H.−H. A hydrogen peroxide sensor based on the nanocomposites of poly(brilliant cresyl blue) and single walled−carbon nanotubes // Anal. Methods. 2012. V. 4, N 5. P. 1421—1426. DOI: 10.1039/C2AY05881B
76. Ghica M. E., Wintersteller Y., Brett C. M. A. Poly(brilliant green)/carbon nanotube−modified carbon film electrodes and application as sensors // J. Solid State Electrochem. 2013. V. 17, N 6. P. 1571—1580. DOI: 10.1007/s10008-013-2040-4
77. Pifferi V., Barsan M. M., Ghica M. E., Falciola L., Brett C. M. A. Synthesis characterization and influence of poly(brilliant green) on the performance of different electrode architectures based on carbon nanotubes and poly(3,4−ethylenedioxythiophene) // Electrochim. Acta. 2013. V. 98. P. 199—207. DOI: 10.1016/j.electacta.2013.03.048
78. Ghica M. E., Brett C. M. A. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors // Talanta. 2014. V. 130. P. 198—206. DOI: 10.1016/j.talanta.2014.06.068
79. Lin Y., Lu F., Tu Y., Ren Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles // Nano Lett. 2004. V. 4, N 2. P. 191—195. DOI: 10.1021/nl0347233
80. Rubianes M. D., Rivas G. A. Carbon nanotubes paste electrode // Electrochem. Commun. 2003. V. 5, N 8. P. 689—694. DOI: 10.1016/S1388-2481(03)00168-1
81. Koehne J. E., Chen H., Cassell A. M., Ye Q., Han J., Meyyappan M., Li J. Miniaturized multiplex label−free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays // Clin. Chem. 2004. V. 50, N 10. P. 1886—1893. DOI: 10.1373/clinchem.2004.036285
82. Pedano M. L., Rivas G. A. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes // Electrochem. Commun. 2004. V. 6, N 1. P. 10—16. DOI: 10.1016/j.elecom.2003.10.008
83. Wong S. S., Josevlevich E., Wooley A. T., Cheung C. L., Lieber C. M. Covalently functionalized nanotubes as nanometer−sized probes in chemistry and biology // Nature. 1998. V. 394. P. 52—55. DOI: 10.1038/27873
84. Mäklin J., Mustonen T., Kordás K., Saukko S., Tóth G., Vähäkangas J. Nitric oxide gas sensors with functionalized carbon nanotubes // Phys. Status Solidi B. 2007. V. 244, N 11. P. 4298—4302. DOI: 10.1002/pssb.200776118
85. Kozhitov L. V., V׳et N. Kh., Kostikova A. V., Zaporotskova I. V., Kozlov V. V. The simulation of carbon material structure based on polyacrylonitrile obtained under IR heating // Modern Electronic Materials. 2016. V. 2, N 1. P. 13—17. DOI: 10.1016/j.moem.2016.08.003
86. Zaporotskova I. V., Polikarpova N. P., Vil’keeva D. E. Sensor activity of carbon nanotubes with a boundary functional group // Nanoscience and Nanotechnology Lett. 2013. V. 5, N 11. P. 1169—1173. DOI: 10.1166/nnl.2013.1704
87. Dewar M. J. S., Thiel W. Ground states of molecules. The MNDO method. approximations and parameters // J. Amer. Chem. Soc. 1977. V. 99, N 15. P. 4899—4907. DOI: 10.1021/ja00457a004
88. Войтюк А. А. Применение метода MNDO для исследования свойств и реакционной способности молекул // Журн. структурной химии. 1988. Т. 29, № 1. С. 138—162.
89. Koch W., Holthausen M. A chemist’s guide to density functional theory. − Weinheim : Wiley−VCH, 2001. − 313 p. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527303723.html
90. Polikarpova N. P., Zaporotskova I. V., Vilkeeva D. E., Polikarpov D. I. Sensor properties of carboxyl−modifies carbon nanotubes // Nanosystems: Phys. Chem. Math. 2014. V. 5, N 1. P. 101—106. http://nanojournal.ifmo.ru/en/wp-content/uploads/2014/02/NPCM51_P101-106.pdf
91. Polikarpova N. P., Zaporotskova I. V., Boroznin S. V., Zaporotskov P. A. About using carbon nanotubes with amino group modification as sensors // J. Nano− Electron. Phys. 2015. V. 7, N 4. P. 04089 (3 pp). http://essuir.sumdu.edu.ua/bitstream/123456789/44562/1/Polikarpova_Carbon_nanotube.pdf
Рецензия
Для цитирования:
Запороцкова И.В., Борознина Н.П., Пархоменко Ю.Н., Кожитов Л.В. СЕНСОРНЫЕ СВОЙСТВА УГЛЕРОДНЫХ НАНОТРУБОК. Известия высших учебных заведений. Материалы электронной техники. 2017;20(1):5-21. https://doi.org/10.17073/1609-3577-2017-1-5-21
For citation:
Zaporotskova I.V., Boroznina N.P., Parkhomenko Yu.N., Kozhitov L.V. SENSOR PROPERTIES OF CARBON NANOTUBES. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(1):5-21. (In Russ.) https://doi.org/10.17073/1609-3577-2017-1-5-21