Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

SENSOR PROPERTIES OF CARBON NANOTUBES

https://doi.org/10.17073/1609-3577-2017-1-5-21

Abstract

A review of publications over the last years dealing with the development of gas and electrochemical sensors, including biosensors, on the basis of carbon nanotubes is provided. Results of the experimental and theoretical study of their principles and operation mechanisms are provided. The structure of carbon nanotubes has been described. The main regularities of the structure, energetic characteristics and sensor properties of the modified semiconducting systems on the basis of carbon nanotubes have been studied. Analysis of the mechanisms of the interaction between nanotubes and the functional groups (including carboxyl and amino ones), metal nanoparticles and polymers for the formation of chemically active sensors has been reported. The possibility of application of the boundary modified monolayer carbon nanotubes for the identification of metals is discussed. Results of simulation of the interaction between nanotubes boundary modified by —COOH and —NH2 groups with atoms and ions of potassium, sodium and lithium obtained using the molecular cluster model and the MNDO and DFT calculation methods are provided. The sensors synthesized in this way will be used for establishment of the existence and identification of metal atoms and their ions included in salts and alkalis.

About the Authors

I. V. Zaporotskova
Volgograd State University.
Russian Federation

Irina V. Zaporotskova: Dr. Sci. (Phys.−Math.), Professor .

100 Universitetskii Prospekt, Volgograd 400062.



N. P. Boroznina
Volgograd State University.
Russian Federation
Natalia P. Boroznina: Cand. Sci. (Phys.−Math.), Associate Professor. 100 Universitetskii Prospekt, Volgograd 400062.


Yu. N. Parkhomenko
National University of Science and Technology MISiS.
Russian Federation
 Yuri N. Parkhomenko: Dr. Sci. (Phys.−Math.), Professor. 4 Leninskiy Prospekt, Moscow 119049.


L. V. Kozhitov
National University of Science and Technology MISiS.
Russian Federation
Lev V. Kozhitov: Dr. Sci. (Eng.), Professor. 4 Leninskiy Prospekt, Moscow 119049.


References

1. Blank V. D., Seepujak A., Polyakov E. V., Batov D. V., Kulnitskiy B. A., Parkhomenko Yu. N., Skryleva E. A., Bangert U., Gutiérrez−Sosa A., Harvey A. J. Growth and characterisation of BNC nanostructures. Carbon, 2009, vol. 47, no. 14, pp. 3167—3174. DOI: 10.1016/j.carbon.2009.07.022

2. Shul’ga Yu. M., Vasilets V. N., Baskakov S. A., Muradyan V. E., Skryleva E. A., Parkhomenko Yu. N. Photoreduction of graphite oxide nanosheets with vacuum ultraviolet radiation. High Energy Chemistry, 2012, vol. 46, no. 2, pp. 117—121. DOI: 10.1134/ S0018143912020099

3. Eliseev A. A., Lukashin A. V. Funktsional’nye nanomaterialy [Functional nanomaterials]. Moscow: Fizmatlit, 2010. 456 p. (In Russ.)

4. Ivanovskii A. L. Kvantovaya khimiya v materialovedenii. Nanotubulyarnye formy veshchestva [Quantum chemistry in materials science. Nanotubular forms of matter]. Ekaterinburg: UrORAN, 1999. 176 p. (In Russ.)

5. Dresselhaus M. S., Dresselhaus G., Eklund P. C. Science of fullerenes and carbon nanotubes. Academic Press, Inc., 1996. 965 p. (https://www.elsevier.com/books/science-of-fullerenes-and-carbon-nanotubes/dresselhaus/978-0-12-221820-0)

6. Saito R., Dresselhaus M. S., Dresselhaus G. Physical properties of carbon nanotubes. Imperial College Press, 1999. 251 p.

7. Kharris P. Uglerodnye nanotruby i rodstvennye struktury. Novye materialy XXI veka [Carbon nanotubes and related structures. New materials of the 21st century]. Moscow: Tekhnosfera, 2003. 336 p. (In Russ.)

8. Zaporotskova I. V. Uglerodnye i neuglerodnye nanomaterialy i kompozitnye struktury na ikh osnove: stroenie i elektronnye svoistva [Carbon and non−carbon nanotubes and composite structures on their basis: structure and electronic properties]. Volgograd: Izd−vo VolGU, 2009. 490 p. (In Russ.)

9. Dresselhaus M. S., Dresselhaus G., Avouris P. Сarbon nanotubes: synthesis, structure, properties, and application. Springer− Verlag, 2000. 464 p.

10. D’yachkov P. N. Elektronnye svoistva i primenenie nanotrubok [Electronic properties and applications of nanotubes]. Moscow: BINOM. Laboratoriya znanii, 2010. 488 p. (In Russ.)

11. Eletskii A. V. Sorption properties of carbon nanostructures. Phys. Usp., 2004, vol. 47. no. 11, pp. 1119—1154. DOI: 10.1070/PU2004v047n11ABEH002017

12. Akhmadishina K. F., Bobrinetskii I. I., Komarov I. A., Malovichko A. M., Nevolin V. K., Petukhov V. A., Golovin A. V., Zalevskii A. O. Flexible biological sensors based on carbon nanotube films. Nanotechnologies in Russia, 2013, vol. 8, no. 11–12, pp. 721—726. (In Russ.). DOI: 10.1134/S1995078013060025

13. Zhang Wei−De, Zhang Wen−Hui. Carbon nanotubes as active components for gas sensors. J. Sensors, 2009, vol. 2009, article ID 160698 (16 p.). DOI: 10.1155/2009/160698

14. Boyd A., Dube I., Fedorov G., Paranjape M., Barbara P. Gas sensing mechanism of carbon nanotubes: from single tubes to high− density networks. Carbon, 2014, vol. 69, pp. 417—423. DOI: 10.1016/j.carbon.2013.12.044§

15. Zhao J., Buldum A., Han J., Lu J. P. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 2002, vol. 13, no. 2,. pp. 195—200. DOI: 10.1088/0957-4484/13/2/312

16. Li J., Lu Y., Ye Q., Cinke M., Han J., Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett., 2003, vol. 3, no. 7, pp. 929—933. DOI: 10.1021/nl034220x

17. Chen R. J., Franklin N. R., Kong J., Cao J., Tombler Th. W., Zhang Yu., Dai H. Molecular photodesorption from single−walled carbon nanotubes. Appl. Phys Lett., 2001, vol. 79, no. 14, pp. 2258— 2260. DOI: 10.1063/1.1408274

18. Kong J., Franklin N. R., Zhou C., Chapline M. G., Peng S., Cho K., Dai H. Nanotube molecular wires as chemical sensors. Science, 2000, vol. 287, no. 5453, pp. 622—625. DOI: 10.1126/science.287.5453.622

19. Zhang J., Boyd A., Tselev A., Paranjape M., Barbara P. Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors. Appl. Phys. Lett., 2006, vol. 88, no. 12, pp. 123112 (3 p.). DOI: 10.1063/1.2187510

20. Helbling T., Pohle R., Durrer L., Stampferc C., Romana C., Jungena A., Fleischerb M., Hierolda C. Sensing NO2 with individual suspended single−walled carbon nanotubes. Sens. Actuators B: Chem., 2008, vol. 132, no. 2, pp. 491—497. DOI: 10.1016/j. snb.2007.11.036

21. Novak J. P., Snow E. S., Houser E. J., Park D., Stepnowski J. L., McGill R. A. Nerve agent detection using networks of single− walled carbon nanotubes. Appl. Phys. Lett., 2003, vol. 83, no. 19, pp. 4026—4028. DOI: 10.1063/1.1626265

22. Peng N., Zhang Q., Lee Y. C., Tan O. K., Marzari N. Gate modulation in carbon nanotube field effect transistors−based NH3 gas sensors. Sens. Actuators B: Chem., 2008, vol. 132, no. 1, pp. 191— 195. DOI: 10.1016/j.snb.2008.01.025

23. Lucci M., Reale A., Di Carlo A., Orlanducci S., Tamburri E., Terranova M. L., Davoli I., Di Natale C., D’Amico A., Paolesse R. Optimization of a NOx gas sensor based on single walled carbon nanotubes. Sens. Actuators B: Chem., 2006, vol. 118, no. 1–2, pp. 226—231. DOI: 10.1016/j.snb.2006.04.027

24. Quang N. H., Van Trinh M., Lee B.−H., Huh J.−S. Effect of NH3 gas on the electrical properties of single−walled carbon nanotube bundles. Sens. Actuators B: Chem., 2006, vol. 113, no. 1, pp. 341—346. DOI: 10.1016/j.snb.2005.03.089

25. Nguyen H.−Q., Huh J.−S. Behavior of single−walled carbon nanotube−based gas sensors at various temperatures of treatment and operation. Sens. Actuators B: Chem., 2006, vol. 117, no. 2, pp. 426—430. DOI: 10.1016/j.snb.2005.11.056

26. Varghese O. K., Kichambre P. D., Gong D., Ong K. G., Dickey E. C., Grimes C. A. Gas sensing characteristics of multi−wall carbon nanotubes. Sens. Actuators B: Chem., 2001, vol. 81, no. 1, pp. 32—41. DOI: 10.1016/S0925-4005(01)00923-6

27. Nguyen L. H., Phi T. V., Phan P. Q., Vu H. N., Nguyen−Duc C., Fossard F. Synthesis of multi−walled carbon nanotubes for NH3 gas detection. Physica E., 2007, vol. 37, no. 1–2, pp. 54—57. DOI: 10.1016/j. physe.2006.12.006

28. Sun G., Liu S., Hua K., Lv X., Huang L., Wang Y. Electrochemical chlorine sensor with multi−walled carbon nanotubes as electrocatalysts. Electrochemistry Communications, 2007, vol. 9, no. 9, pp. 2436—2440. DOI: 10.1016/j.elecom.2007.07.015

29. Piloto C., Mirri F., Bengio E. A., Notarianni M., Gupta B., Shafiei M., Pasquali M., Motta N. Room temperature gas sensing properties of ultrathin carbon nanotube films by surfactant−free dip coating. Sens. Actuators B: Chem., 2016, vol. 227, pp. 128—134. DOI: 10.1016/j.snb.2015.12.051

30. Valentini L., Cantalini C., Armentano I., Kenny J. M., Lozzi L., Santucci S. Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond and Related Materials, 2004, vol. 13, no. 4–8, pp. 1301—1305. DOI: 10.1016/j.diamond.2003.11.011

31. Hoa N. D., Van Quy N., Cho Y., Kim D. An ammonia gas sensor based on non−catalytically synthesized carbon nanotubes on an anodic aluminum oxide template. Sens. Actuators B: Chem., 2007, vol. 127, no. 2, pp. 447—454. DOI: 10.1016/j.snb.2007.04.041

32. Fu D., Lim H., Shi Y., Dong X., Mhaisalkar S. G., Chen Y., Moochhala S., Li L.−J. Differentiation of gas molecules using flexible and all−carbon nanotube devices. J. Phys. Chem. C., 2008, vol. 112, no. 3, pp. 650—653. DOI: 10.1021/jp710362r

33. Tran T. H., Lee J.−W., Lee K., Lee Y. D., Ju B.−K. The gas sensing properties of single−walled carbon nanotubes deposited on an aminosilane monolayer. Sens. Actuators B: Chem., 2008, vol. 129, no. 1, pp. 67—71. DOI: 10.1016/j.snb.2007.07.104

34. Zhou Y., Jiang Y., Xie G., Du X., Tai H. Gas sensors based on multiple−walled carbon nanotubes−polyethylene oxide films for toluene vapor detection. Sens. Actuators B: Chem., 2014, vol. 191, pp. 24—30. DOI: 10.1016/j.snb.2013.09.079

35. Liu S. F., Lin S., Swager T. M. An organocobalt−carbon nanotube chemiresistive carbon monoxide detector. ACS Sens., 2016, vol. 1, no. 4, pp. 354—357. DOI: 10.1021/acssensors.6b00005

36. Qi P., Vermesh O., Grecu M., Javey A., Wang Q., Dai H., Peng S., Cho K. J. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett., 2003, vol. 3, no. 3, pp. 347—351. DOI: 10.1021/ nl034010k

37. Bekyarova E., Davis M., Burch T., Itkis M. E., Zhao B., Sunshine S., Haddon R. C. Chemically functionalized single−walled carbon nanotubes as ammonia sensors. J. Phys. Chem. B., 2004, vol. 108, no. 51, pp. 19717—19720. DOI: 10.1021/jp0471857

38. Abraham J. K., Philip B., Witchurch A., Varadan V. K., Reddy C. C. A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Materials and Structures, 2004, vol. 13, no. 5, pp. 1045—1049. DOI: 10.1088/0964-1726/13/5/010

39. Im J., Sterner E. S., Swager T. M. Integrated gas sensing system of swcnt and cellulose polymer concentrator for benzene, toluene, and xylenes. Sensors, 2016, vol. 16, no. 2, p. 183. DOI: 10.3390/s16020183

40. Abdelhalim A., Abdellah A., Scarpa G., Lugli P. Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications. Nanotechnology, 2014, vol. 25, no. 5, p. 055208. DOI: 10.1088/0957-4484/25/5/055208

41. Kong J., Chapline M. G., Dai H. J. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater., 2001, vol. 13, no. 18, pp. 1384—1386. DOI: 10.1002/1521-4095(200109)13:18<1384::AIDADMA1384>3.0.CO;2-8

42. Sayago I., Terrado E., Aleixandre M., Horrillo M. C., Fernández M. J., Lozano J., Lafuente E., Maser W. K., Benito A. M., Martinez M. T., Gutiérrez J., Muñoz E. Novel selective sensors based on carbon nanotube films for hydrogen detection. Sens. Actuators B: Chem., 2007, vol. 122, no. 1, pp. 75—80. DOI: 10.1016/j.snb.2006.05.005

43. Mubeen S., Zhang T., Yoo B., Deshusses M. A., Myung N. V. Palladium nanoparticles decorated single−walled carbon nanotube hydrogen sensor. J. Phys. Chem. C., 2007, vol. 111, no. 17, pp. 6321— 6327. DOI: 10.1021/jp067716m

44. Kumar M. K., Ramaprabhu S. Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor. J. Phys. Chem. B., 2006, vol. 110, no. 23, pp. 11291—11298. DOI: 10.1021/jp0611525

45. Kumar M. K., Ramaprabhu S. Palladium dispersed multiwalled carbon nanotube based hydrogen sensor for fuel cell applications. Int. J. Hydrogen Energy., 2007, vol. 32, no. 13, pp. 2518—2526. DOI: 10.1016/j.ijhydene.2006.11.015

46. Seo S. M., Kang T. J., Cheon J. H., Kim Y. H., Park Y. J. Facile and scalable fabrication of chemiresistive sensor array for hydrogen detection based on gold−nanoparticle decorated SWCNT network. Sens. Actuators B: Chem., 2014, vol. 204, pp. 716—722. DOI: 10.1016/j.snb.2014.07.119

47. Kamarchuk G. V., Kolobov I. G., Khotkevich A. V., Yanson I. K., Pospelov A. P., Levitsky I. A., Euler W. B. New chemical sensors based on point heterocontact between single wall carbon nanotubes and gold wires. Sens. Actuators B: Chem., 2008, vol. 134, no. 2, pp. 1022—1026. DOI: 10.1016/j.snb.2008.07.012

48. Star A., Joshi V., Skarupo S., Thomas D., Gabriel J.−C. P. Gas sensor array based on metal−decorated carbon nanotubes. J. Phys. Chem. B., 2006, vol. 110, no. 42, pp. 21014—21020. DOI: 10.1021/jp064371z

49. Kwona Y. J., Naa H. G., Kanga S. Y., Choib S.−W., Kimb S. S., Kima H. W. Selective detection of low concentration toluene gas using Pt−decorated carbon nanotubes sensors. Sens. Actuators B: Chem., 2016, vol. 227, pp. 157—168. DOI: 10.1016/j.snb.2015.12.024

50. Hafaiedh I., Elleuch W., Clement P., Llobet E., Abdelghani A. Multi−walled carbon nanotubes for volatile organic compound detection. Sens. Actuators B: Chem., 2013, vol. 182, pp. 344—350. DOI: 10.1016/j.snb.2013.03.020

51. Espinosa E. H., Ionescu R., Chambon B., Bedis G., Sotter E., Bittencourt C., Felten A., Pireaux J.−J., Correig X., Llobet E. Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing. Sens. Actuators B: Chem., 2007, vol. 127, no. 1, pp. 137—142. DOI: 10.1016/j.snb.2007.07.108

52. Chen Y., Zhu C., Wang T. The enhanced ethanol sensing properties of multi−walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology, 2006, vol. 17, no. 12, pp. 3012—3017. DOI: 10.1088/0957−4484/17/12/033

53. Wang J., Liu L., Cong S.−Y., Qi J.−Q., Xu B.−K. An enrichment method to detect low concentration formaldehyde. Sens. Actuators B: Chem., 2008, vol. 134, no. 2, pp. 1010—1015. DOI: 10.1016/j. snb.2008.07.010

54. Bittencourt C., Felten A., Espinosa E. H., Ionescu R., Llobet E., Correig X., Pireaux J.−J. WO3 films modified with functionalised multi−wall carbon nanotubes: morphological, compositional and gas response studies. Sens. Actuators B: Chem., 2006, vol. 115, no. 1, pp. 33—41. DOI: 10.1016/j.snb.2005.07.067

55. Wei B.−Y., Hsu M.−C., Su P.−G., Lin H.−M., Wu R.−J., Lai H.−J. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sens. Actuators B: Chem., 2004, vol. 101, no. 1–2, pp. 81—89. DOI: 10.1016/j.snb.2004.02.028

56. Hoa N. D., Quy N. V., Cho Y. S., Kim D. Nanocomposite of SWCNTs and SnO2 fabricated by soldering process for ammonia gas sensor application. Phys. Status Solidi A., 2007, vol. 204, no. 6, pp. 1820—1824. DOI: 10.1002/pssa.200675318

57. Liu Y.−L., Yang H.−F., Yang Y., Liu Z.−M., Shen G.−L., Yu R.−Q. Gas sensing properties of tin dioxide coated onto multiwalled carbon nanotubes. Thin Solid Films, 2006, vol. 497, no. 1–2, pp. 355—360. DOI: 10.1016/j.tsf.2005.11.018

58. Van Hieu N., Thuy L. T. B., Chien N. D. Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/ MWCNTs composite. Sens. Actuators B: Chem., 2008, vol. 129, no. 2, pp. 888—895. DOI: 10.1016/j.snb.2007.09.088

59. Sánchez M., Guirado R., Rincón M. E. Multiwalled carbon nanotubes embedded in sol−gel derived TiO2 matrices and their use as room temperature gas sensors. J. Mater. Sci.: Mater. Electron., 2007, vol. 18, no. 11, pp. 1131—1136. DOI: 10.1007/s10854−007−9144−5

60. Van Duy N., Van Hieu N., Huy P. T., Chien N. D., Thamilselvan M., Yi J. Mixed SnO2/TiO2 included with carbon nanotubes for gas−sensing application. Physica E., 2008, vol. 41, no. 2, pp. 258—263. DOI: 10.1016/j.physe.2008.07.007

61. Dragoman M., Grenier K., Dubuc D., Bary L., Plana R., Fourn E., Flahaut E. Millimeter wave carbon nanotube gas sensor. J. Appl. Phys., 2007, vol. 101, no. 10, pp. 106103. DOI: 10.1063/1.2734873

62. Adjizian J.−J., Leghrib R., Koos A. A., Suarez−Martinez I., Crossley A., Wagner Ph., Grobert N., Llobet E., Ewels Ch. P. Boron− and nitrogen−doped multi−wall carbon nanotubes for gas detection. Carbon, 2014, vol. 66, pp. 662—673. DOI: 10.1016/j.carbon.2013.09.064

63. Kim J., Choi S.−W., Lee J.−H., Chung Y., Byun Y. T. Gas sensing properties of defect−induced single−walled carbon nanotubes. Sens. Actuators B: Chem., 2016, vol. 228, pp. 688—692. DOI: 10.1016/j.snb.2016.01.094

64. Hou Z., Xu D., Cai B. Ionization gas sensing in a microelectrode system with carbon nanotubes. Appl. Phys Lett., 2006, vol. 89, no. 21, p. 213502. DOI: 10.1063/1.2392994

65. De Heer W. A., Châtelain A., Ugarte D. A carbon nanotube field−emission electron source. Science, 1995, vol. 270, no. 5239, pp. 1179—1180. DOI: 10.1126/science.270.5239.1179

66. De Jonge N., Lamy Y., Schoots K., Oosterkamp T. H. High brightness electron beam from a multi−walled carbon nanotube. Nature, 2002, vol. 420, no. 6914, pp. 393—395. DOI: 10.1038/nature01233

67. Yeow J. T. W. , She J. P. M. Carbon nanotube−enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology, 2006, vol. 17, no. 21, pp. 5441—5448. DOI: 10.1088/09574484/17/21/026

68. Snow E. S., Perkins F. K., Houser E. J., Badescu S. C., Reinecke T. L. Chemical detection with a single−walled carbon nanotube capacitor. Science, 2005, vol. 307, no. 5717, pp. 1942—1945. DOI: 10.1126/science.1109128

69. Chopra S., Pham A., Gaillard J., Parker A., Rao A. M. Carbon−nanotube−based resonant−circuit sensor for ammonia. Appl. Phys Lett., 2002, vol. 80, no. 24, pp. 4632—4636. DOI: 10.1063/1.1486481

70. Chopra S., McGuire K., Gothard N., Rao A. M., Pham A. Selective gas detection using a carbon nanotube sensor. Appl. Phys Lett., 2003, vol. 83, no. 11, pp. 2280—2282. DOI: 10.1063/1.1610251

71. Buzanovskii V. A. Electrochemical sensors based on carbon nanotubes and their use in biomedical research. Biomeditsinskaya khimiya, 2011, vol. 57, no. 6. pp. 12—31. (In Russ.). DOI: 10.18097/ pbmc20125801012

72. Barsan M. M., Ghica M. E., Brett C. M. A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes. Analytica Chimica Acta, 2015, vol. 881, pp. 1—23. DOI: 10.1016/j.aca.2015.02.059

73. Chen A., Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev., 2013, vol. 42, no. 12, pp. 5425—5438. DOI: 10.1039/C3CS35518G

74. Pauliukaite R., Ghica M. E., Barsan M. M., Brett C. M. A. Phenazines and polyphenazines in electrochemical sensors and biosensors. Anal. Lett., 2010, vol. 43, no. 10–11, pp. 1588—1608. DOI: 10.1080/00032711003653791

75. Liu H.−J., Yang D.−W., Liu H.−H. A hydrogen peroxide sensor based on the nanocomposites of poly(brilliant cresyl blue) and single walled−carbon nanotubes. Anal. Methods., 2012, vol. 4, no. 5, pp. 1421—1426. DOI: 10.1039/C2AY05881B

76. Ghica M. E., Wintersteller Y., Brett C. M. A. Poly(brilliant green)/carbon nanotube−modified carbon film electrodes and application as sensors. J. Solid State Electrochem., 2013, vol. 17, no. 6, pp. 1571—1580. DOI: 10.1007/s10008-013-2040-4

77. Pifferi V., Barsan M. M., Ghica M. E., Falciola L., Brett C. M. A. Synthesis characterization and influence of poly(brilliant green) on the performance of different electrode architectures based on carbon nanotubes and poly(3,4− ethylenedioxythiophene). Electrochim. Acta., 2013, vol. 98, pp. 199—207. DOI: 10.1016/j.electacta.2013.03.048

78. Ghica M. E., Brett C. M. A. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors. Talanta, 2014, vol. 130, pp. 198—206. DOI: 10.1016/j.talanta.2014.06.068

79. Lin Y., Lu F., Tu Y., Ren Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett., 2004, vol. 4, no. 2, pp. 191—195. DOI: 10.1021/nl0347233

80. Rubianes M. D., Rivas G. A. Carbon nanotubes paste electrode. Electrochem. Commun., 2003, vol. 5, no. 8, pp. 689—694. DOI: 10.1016/S1388-2481(03)00168-1

81. Koehne J. E., Chen H., Cassell A. M., Ye Q., Han J., Meyyappan M., Li J. Miniaturized multiplex label−free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays. Clin. Chem., 2004, vol. 50, no. 10, pp. 1886—1893. DOI: 10.1373/ clinchem.2004.036285

82. Pedano M. L., Rivas G. A. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes. Electrochem. Commun., 2004, vol. 6, no. 1, pp. 10—16. DOI: 10.1016/j. elecom.2003.10.008

83. Wong S. S., Josevlevich E., Wooley A. T., Cheung C. L., Lieber C. M. Covalently functionalized nanotubes as nanometer−sized probes in chemistry and biology. Nature, 1998, vol. 394, pp. 52—55. DOI: 10.1038/27873

84. Mäklin J., Mustonen T., Kordás K., Saukko S., Tóth G., Vähäkangas J. Nitric oxide gas sensors with functionalized carbon nanotubes. Phys. Status Solidi B. 2007, vol. 244, no. 11, pp. 4298— 4302. DOI: 10.1002/pssb.200776118

85. Kozhitov L. V., V׳et N. Kh., Kostikova A. V., Zaporotskova I. V., Kozlov V. V. The simulation of carbon material structure based on polyacrylonitrile obtained under IR heating. Modern Electronic Materials. 2016, vol. 2, no. 1. pp. 13—17. DOI: 10.1016/j.moem.2016.08.003

86. Zaporotskova I. V., Polikarpova N. P., Vil’keeva D. E. Sensor activity of carbon nanotubes with a boundary functional group. Nanoscience and Nanotechnology Lett., 2013, vol. 5, no. 11, pp. 1169— 1173. DOI: 10.1166/nnl.2013.1704

87. Dewar M. J. S., Thiel W. Ground states of molecules. The MNDO method. Approximations and parameters. J. Amer. Chem. Soc., 1977, vol. 99, no. 15, pp. 4899—4907. DOI: 10.1021/ja00457a004

88. Voityuk A. A. Application of the MNDO method to investigation of properties and reactivity of molecules. J. Struct. Chem., 1988, vol. 29, no. 1, pp. 120—146. DOI: 10.1007/BF00750187

89. Koch W., Holthausen M. A chemist’s guide to density functional theory. Weinheim: Wiley−VCH, 2001. 313 p. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527303723.html

90. Polikarpova N. P., Zaporotskova I. V., Vilkeeva D. E., Polikarpov D. I. Sensor properties of carboxyl−modifies carbon nanotubes. Nanosystems: Phys. Chem. Math., 2014, vol. 5, no. 1, pp. 101— 106. http://nanojournal.ifmo.ru/en/wp-content/uploads/2014/02/ NPCM51_P101-106.pdf

91. Polikarpova N. P., Zaporotskova I. V., Boroznin S. V., Zaporotskov P. A. About using carbon nanotubes with amino group modification as sensors. J. Nano− Electron. Phys., 2015, vol. 7, no. 4, pp. 04089 (3 pp). http://essuir.sumdu.edu.ua/bitstream/123456789/44562/1/Polikarpova_Carbon_nanotube.pdf


Review

For citations:


Zaporotskova I.V., Boroznina N.P., Parkhomenko Yu.N., Kozhitov L.V. SENSOR PROPERTIES OF CARBON NANOTUBES. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(1):5-21. (In Russ.) https://doi.org/10.17073/1609-3577-2017-1-5-21

Views: 1211


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)