Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

STUDY OF PLASTIC FORMING IN PRODUCTION OF THERMOELECTRIC BISMUTH TELLURIDE BASED MATERIAL

https://doi.org/10.17073/1609-3577-2017-1-22-31

Abstract

An experimental and theoretical study of the process of the equal−channel angular pressing (ECAP) was performed to obtain a thermoelectric (TE) material based on bismuth telluride. A brief review of the mathematical modeling of the ECAP process is given. The influence of the ECAP design features and temperature modes on the process of plastic forming is considered. The results of calculations of the thermally stressed state of samples at different stages of the ECAP process are presented. The calculations of the ECAP process were carried out by means of Lagrangian finite element mesh, which adjusted adaptively during the process to the die geometry and became finer or coarser depending on the magnitude of the plastic deformation. It was required for the specified calculation accuracy and the convergence of iterative process. The results of an experimental study of the structure and properties of samples obtained by the ECAP using a set of measuring methods (X−ray diffractometry and electron microscopy) are discussed. The thermoelectric characteristics of the obtained materials were measured by Harman method. Comparative methodical calculations of the ECAP process for TE materials based on bismuth telluride have been made by adjusting parameters determining the grain formation (i.e. the critical plastic deformation as a function of temperature and power−law dependence of its rates). It made possible to adjust the ECAP model on the basis of the measured grain sizes for TE materials . The calculation results of grain creation during the plastic forming, which are compared with the measurement data, are presented. The practical result of this research was the improved geometry of the die and the validated technological regimes of plastic deformation, which allowed obtaining samples with the good TE efficiency.

About the Authors

D. I. Bogomolov
National University of Science and Technology MISiS.
Russian Federation
Denis I. Bogomolov: Cand. Sci. (Eng.), Assistant. 4 Leninsky Prospekt, Moscow 119049.


V. T. Bublik
National University of Science and Technology MISiS.
Russian Federation
Vladimir T. Bublik: Dr. Sci. (Phys.−Math.), Professor. 4 Leninsky Prospekt, Moscow 119049.


N. A. Verezub
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences.
Russian Federation

Nataliya A. Verezub: Cand. Sci. (Phys.−Math.), Senior Researcher.

101−1 Prospekt Vernadskogo, Moscow 119526.



A. I. Prostomolotov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences.
Russian Federation

 Anatoly I. Prostomolotov: Dr. Sci. (Eng.), Leading Researcher.

101−1 Prospekt Vernadskogo, Moscow 119526.



N. Yu. Tabachkova
National University of Science and Technology MISiS.
Russian Federation

 Natalia Yu. Tabachkova: Cand. Sci. (Phys.−Math.), Associate Professor.

4 Leninsky Prospekt, Moscow 119049.



References

1. Im J.−T. Grain refinement and texture development of cast BiSb alloy via severe plastic deformation. Yeung University (S. Korea), 2007. 113 p.

2. Zhu W., Yang J. Y., Gao X. H., Hou J., Bao S. Q., Fan X. A. The underpotential deposition of bismuth and tellurium on cold rolled silver substrate by ECALE. Electrochimica Acta., 2005, vol. 50, no. 27, pp. 5465—5472. DOI: 10.1016/j.electacta.2005.03.028

3. Ashida M., Hamachiyo T., Hasezaki K., Matsunoshita H., Horita Z. Effect of high pressure torsion on crystal orientation to improve the thermoelectric property of a Bi2Te3−based thermoelectric semiconductor. Adv. Mater. Res., 2010, vol. 89–91, pp. 41—46. DOI: 10.4028/www.scientific.net/AMR.89−91.41

4. Ceresara S., Codecasa M., Passaretti F., Tomeš F., Weidenkaff F., Fanciulli C. Thermoelectric properties of in situ formed Bi0.85Sb0.15/Bi−rich particles composite. J. Electronic Materials. 2011, vol. 40, no. 5, pp. 557—560. DOI: 10.1007/s11664−010−1450−7

5. Im J.−T., Hartwig K. T., Sharp J. Microstructural refinement of cast p−type Bi2Te3—Sb2Te3 by equal channel angular extrusion. Acta Materialia, 2004, vol. 52, no. 1, pp. 49—55. DOI: 10.1016/j.actamat.2003.08.025

6. Kim Hyoung Seop, Quang Pham, Seo Min Hong, Hong Sun Ig, Baik Kyeong Ho, Lee Hong Rho, Nghiep Do Minh. Process modelling of equal channel angular pressing for ultrafine grained materials. Materials Transactions, 2004, vol. 45, no. 7, pp. 2172—2176. DOI: 10.2320/matertrans.45.2172

7. Maciejewski J., Kopeć H., Petryk H. Finite element analysis of strain non−uniformity in two processes of severe plastic deformation. Engineering Transactions, 2007, vol. 55, no. 3, pp. 197—216.

8. Aour B., Mitsak A. Analysis of plastic deformation of semi−crystalline polymers during ECAE process using 135° die. J. Theoretical and Applied Mechanics, 2016, vol. 54, no. 1, pp. 263—275. DOI: 10.15632/jtam−pl.54.1.263

9. Beyerlein I. J., Lebensohn R. A., Tomé C. N. Modeling texture and microstructural evolution in the equal channel angular extrusion process. Materials Science and Engineering A, 2003, vol. 345, no. 1–2, pp. 122—138. DOI: 10.1016/S0921−5093(02)00457−4

10. Parshikov R. A., Rudskoy A. I., Zolotov A. M., Tolochko O. V. Technological problems of equal channel angular pressing. Rev. Adv. Mater. Sci., 2013, vol. 34, pp. 26—36. URL: http://www.ipme.ru/e−journals/RAMS/no_13413/04_13413_tolochko.pdf

11. Luis C. J., Salcedo D., Luri R., León J., Puertas I. FEM modelling of the continuous combined drawing and rolling process for severe plastic deformation of metallic materials. In book: Numerical modeling of materials under extreme conditions. Advanced structured materials. V. 35. Berlin; Heidelberg: Springer, 2014, pp. 17—45. DOI: 10.1007/978-3-642-54258-9_2

12. Basavaraj P. 3D finite element simulation of equal channel angular pressing with different material models. International Journal of Emerging Technologies and Innovative Research, 2016, vol. 3, no. 3, pp. 16—28. URL: http://www.jetir.org/view?paper=JETIR1603005

13. Krállics G., Széles Z., Malgyn D. Finite element simulation of multi−pass equal channel angular pressing. Materials Science Forum, 2003, vol. 414–415, pp. 439—444. DOI: 10.4028/www.scientific.net/MSF.414−415.439

14. Bogomolov D. I. Struktura i svoistva nizkotemperaturnykh termoelektricheskikh materialov, poluchennykh intensivnoi plasticheskoi deformatsiei [The structure and properties of low− temperature thermoelectric materials obtained by intense plastic deformation]. Avtoreferat dis. … kand. tekhn. nauk. Moscow: MISiS, 2013. 23 p. (In Russ.)

15. Eger J. K. Uprugost’, prochnost’ i tekuchest’ [Elasticity Strength and Fluidity]. Moscow: Mashgiz, 1961. 170 p. (In Russ.)

16. Lavrent’ev M. G., Mezhenny M. V., Osvensky V .B., Prostomolotov A. I. Mathematical modeling of extrusion process of thermoelectric material. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2012, vol. 3, pp. 35—40. (In Russ.). DOI: 10.17073/1609-35772012-3-35-40

17. MSC.Marc Volume A: Theory and User Information. MSC. Software Corporation. 2008. 805 p. URL: https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=DOC9245

18. Mitsak A., Aour B., Khelil F. Numerical investigation of plastic deformation in two−turn equal channel angular extrusion. Engineering, Technology & Applied Science Research, 2014, vol. 4, no. 6, pp. 728—733. URL: http://etasr.com/index.php/ETASR/article/view/517

19. Li S., Bourke M. A. M., Beyerlein I. J., Alexander D. J., Clausen B. Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion. Materials Science and Engineering A, 2004, vol. 382, no. 1–2, pp. 217—236. DOI: 10.1016/j.msea.2004.04.067

20. Bogomolov D. I., Bublik V. T., Tabachkova N. Yu., Tarasova I. V. Properties and formation of the structure of Bi2Se0.3Te2.7 solid solutions produced by equal−channel angular pressing. J. Electronic Materials, 2016, vol. 45, no. 1, pp. 403—410. DOI: 10.1007/ s11664−015−4110−0

21. Prostomolotov A. I., Verezub N. A. Dynamic modeling of plastic formation of thermo−electrical material by hot extrusion. Tambov University Reports. Series: Natural and Technical Sciences, 2016, vol. 21, no. 3, pp. 818—821. (In Russ.). DOI: 10.20310/1810−0198−2016−21−3−818−821


Review

For citations:


Bogomolov D.I., Bublik V.T., Verezub N.A., Prostomolotov A.I., Tabachkova N.Yu. STUDY OF PLASTIC FORMING IN PRODUCTION OF THERMOELECTRIC BISMUTH TELLURIDE BASED MATERIAL. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(1):22-31. (In Russ.) https://doi.org/10.17073/1609-3577-2017-1-22-31

Views: 1136


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)