STUDY OF PLASTIC FORMING IN PRODUCTION OF THERMOELECTRIC BISMUTH TELLURIDE BASED MATERIAL
https://doi.org/10.17073/1609-3577-2017-1-22-31
Abstract
About the Authors
D. I. BogomolovRussian Federation
Denis I. Bogomolov: Cand. Sci. (Eng.), Assistant. 4 Leninsky Prospekt, Moscow 119049.
V. T. Bublik
Russian Federation
Vladimir T. Bublik: Dr. Sci. (Phys.−Math.), Professor. 4 Leninsky Prospekt, Moscow 119049.
N. A. Verezub
Russian Federation
Nataliya A. Verezub: Cand. Sci. (Phys.−Math.), Senior Researcher.
101−1 Prospekt Vernadskogo, Moscow 119526.
A. I. Prostomolotov
Russian Federation
Anatoly I. Prostomolotov: Dr. Sci. (Eng.), Leading Researcher.
101−1 Prospekt Vernadskogo, Moscow 119526.
N. Yu. Tabachkova
Russian Federation
Natalia Yu. Tabachkova: Cand. Sci. (Phys.−Math.), Associate Professor.
4 Leninsky Prospekt, Moscow 119049.
References
1. Im J.−T. Grain refinement and texture development of cast BiSb alloy via severe plastic deformation. Yeung University (S. Korea), 2007. 113 p.
2. Zhu W., Yang J. Y., Gao X. H., Hou J., Bao S. Q., Fan X. A. The underpotential deposition of bismuth and tellurium on cold rolled silver substrate by ECALE. Electrochimica Acta., 2005, vol. 50, no. 27, pp. 5465—5472. DOI: 10.1016/j.electacta.2005.03.028
3. Ashida M., Hamachiyo T., Hasezaki K., Matsunoshita H., Horita Z. Effect of high pressure torsion on crystal orientation to improve the thermoelectric property of a Bi2Te3−based thermoelectric semiconductor. Adv. Mater. Res., 2010, vol. 89–91, pp. 41—46. DOI: 10.4028/www.scientific.net/AMR.89−91.41
4. Ceresara S., Codecasa M., Passaretti F., Tomeš F., Weidenkaff F., Fanciulli C. Thermoelectric properties of in situ formed Bi0.85Sb0.15/Bi−rich particles composite. J. Electronic Materials. 2011, vol. 40, no. 5, pp. 557—560. DOI: 10.1007/s11664−010−1450−7
5. Im J.−T., Hartwig K. T., Sharp J. Microstructural refinement of cast p−type Bi2Te3—Sb2Te3 by equal channel angular extrusion. Acta Materialia, 2004, vol. 52, no. 1, pp. 49—55. DOI: 10.1016/j.actamat.2003.08.025
6. Kim Hyoung Seop, Quang Pham, Seo Min Hong, Hong Sun Ig, Baik Kyeong Ho, Lee Hong Rho, Nghiep Do Minh. Process modelling of equal channel angular pressing for ultrafine grained materials. Materials Transactions, 2004, vol. 45, no. 7, pp. 2172—2176. DOI: 10.2320/matertrans.45.2172
7. Maciejewski J., Kopeć H., Petryk H. Finite element analysis of strain non−uniformity in two processes of severe plastic deformation. Engineering Transactions, 2007, vol. 55, no. 3, pp. 197—216.
8. Aour B., Mitsak A. Analysis of plastic deformation of semi−crystalline polymers during ECAE process using 135° die. J. Theoretical and Applied Mechanics, 2016, vol. 54, no. 1, pp. 263—275. DOI: 10.15632/jtam−pl.54.1.263
9. Beyerlein I. J., Lebensohn R. A., Tomé C. N. Modeling texture and microstructural evolution in the equal channel angular extrusion process. Materials Science and Engineering A, 2003, vol. 345, no. 1–2, pp. 122—138. DOI: 10.1016/S0921−5093(02)00457−4
10. Parshikov R. A., Rudskoy A. I., Zolotov A. M., Tolochko O. V. Technological problems of equal channel angular pressing. Rev. Adv. Mater. Sci., 2013, vol. 34, pp. 26—36. URL: http://www.ipme.ru/e−journals/RAMS/no_13413/04_13413_tolochko.pdf
11. Luis C. J., Salcedo D., Luri R., León J., Puertas I. FEM modelling of the continuous combined drawing and rolling process for severe plastic deformation of metallic materials. In book: Numerical modeling of materials under extreme conditions. Advanced structured materials. V. 35. Berlin; Heidelberg: Springer, 2014, pp. 17—45. DOI: 10.1007/978-3-642-54258-9_2
12. Basavaraj P. 3D finite element simulation of equal channel angular pressing with different material models. International Journal of Emerging Technologies and Innovative Research, 2016, vol. 3, no. 3, pp. 16—28. URL: http://www.jetir.org/view?paper=JETIR1603005
13. Krállics G., Széles Z., Malgyn D. Finite element simulation of multi−pass equal channel angular pressing. Materials Science Forum, 2003, vol. 414–415, pp. 439—444. DOI: 10.4028/www.scientific.net/MSF.414−415.439
14. Bogomolov D. I. Struktura i svoistva nizkotemperaturnykh termoelektricheskikh materialov, poluchennykh intensivnoi plasticheskoi deformatsiei [The structure and properties of low− temperature thermoelectric materials obtained by intense plastic deformation]. Avtoreferat dis. … kand. tekhn. nauk. Moscow: MISiS, 2013. 23 p. (In Russ.)
15. Eger J. K. Uprugost’, prochnost’ i tekuchest’ [Elasticity Strength and Fluidity]. Moscow: Mashgiz, 1961. 170 p. (In Russ.)
16. Lavrent’ev M. G., Mezhenny M. V., Osvensky V .B., Prostomolotov A. I. Mathematical modeling of extrusion process of thermoelectric material. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2012, vol. 3, pp. 35—40. (In Russ.). DOI: 10.17073/1609-35772012-3-35-40
17. MSC.Marc Volume A: Theory and User Information. MSC. Software Corporation. 2008. 805 p. URL: https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=DOC9245
18. Mitsak A., Aour B., Khelil F. Numerical investigation of plastic deformation in two−turn equal channel angular extrusion. Engineering, Technology & Applied Science Research, 2014, vol. 4, no. 6, pp. 728—733. URL: http://etasr.com/index.php/ETASR/article/view/517
19. Li S., Bourke M. A. M., Beyerlein I. J., Alexander D. J., Clausen B. Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion. Materials Science and Engineering A, 2004, vol. 382, no. 1–2, pp. 217—236. DOI: 10.1016/j.msea.2004.04.067
20. Bogomolov D. I., Bublik V. T., Tabachkova N. Yu., Tarasova I. V. Properties and formation of the structure of Bi2Se0.3Te2.7 solid solutions produced by equal−channel angular pressing. J. Electronic Materials, 2016, vol. 45, no. 1, pp. 403—410. DOI: 10.1007/ s11664−015−4110−0
21. Prostomolotov A. I., Verezub N. A. Dynamic modeling of plastic formation of thermo−electrical material by hot extrusion. Tambov University Reports. Series: Natural and Technical Sciences, 2016, vol. 21, no. 3, pp. 818—821. (In Russ.). DOI: 10.20310/1810−0198−2016−21−3−818−821
Review
For citations:
Bogomolov D.I., Bublik V.T., Verezub N.A., Prostomolotov A.I., Tabachkova N.Yu. STUDY OF PLASTIC FORMING IN PRODUCTION OF THERMOELECTRIC BISMUTH TELLURIDE BASED MATERIAL. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(1):22-31. (In Russ.) https://doi.org/10.17073/1609-3577-2017-1-22-31