Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

MULTILAYERED PERIODICAL STRUCTURES WITH ELASTICALLY STRAINED GESISN LAYERS AND GESISN NANOISLANDS

https://doi.org/10.17073/1609-3577-2017-1-38-44

Abstract

This work deals with elastically strained GeSiSn films and GeSiSn islands. Kinetic diagram of GeSiSn growth at different lattice mismatches between GeSiSn and Si has been established. Multilayer periodic structures with pseudomorphic GeSiSn layers and GeSiSn island array have been obtained. The density of the islands in the GeSiSn layer reaches 1.8 ⋅ 1012 cm−2 at an average island size of 4 nm. Analysis of the rocking curves showed that the structures contain smooth heterointerfaces, and strong changes of composition and thickness from period to period have not been found. Photoluminescence has been demonstrated and calculation of band diagram in the model solid theory approach has been carried out. Luminescence for the sample with pseudomorphic Ge0.315Si0.65Sn0.035 layers in narrow range of 0.71—0.82 eV is observed with the maximum intensity near 0.78 eV corresponding to a 1.59 µm wavelength. Based on a band diagram calculation for Si/ Ge0.315Si0.65Sn0.035/Si heterocomposition, one can conclud that luminescence with a photon energy of 0.78 eV corresponds to interband transitions between the X−valley in the Si and the heavy hole subband in the Ge0.315Si0.65Sn0.035 layer.

About the Authors

V. A. Timofeev
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences.
Russian Federation

Vyacheslav A. Timofeev: Cand. Sci. (Phys.−Math.), Researcher. 

13 Ac. Lavrentiev Ave., Novosibirsk 630090.



A. I. Nikiforov
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences.
Russian Federation

 Alexandr I. Nikiforov: Cand. Sci. (Phys.− Math.), Senior Researcher, Head of Laboratory No. 16. 

13 Ac. Lavrentiev Ave., Novosibirsk 630090.



A. R. Tuktamyshev
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences.
Russian Federation

Artur R. Tuktamyshev: Postgraduate Student. 

13 Ac. Lavrentiev Ave., Novosibirsk 630090.



A. A. Bloshkin
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences.
Russian Federation

 Aleksey A. Bloshkin: Cand. Sci. (Phys.−Math.), Researcher.

13 Ac. Lavrentiev Ave., Novosibirsk 630090.



V. I. Mashanov
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences.
Russian Federation

 Vladimir I. Mashanov: Cand. Sci. (Phys.−Math.), Senior Researcher.

13 Ac. Lavrentiev Ave., Novosibirsk 630090.



S. A. Teys
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences.
Russian Federation

Sergey A. Teys: Cand. Sci. (Phys.−Math.), Senior Researcher .

13 Ac. Lavrentiev Ave., Novosibirsk 630090.



I. D. Loshkarev
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences.
Russian Federation

 Ivan D. Loshkarev: Cand. Sci. (Phys.−Math.), Researcher. 

13 Ac. Lavrentiev Ave., Novosibirsk 630090.



N. A. Baidakova
Institute for Physics of Microstructures, Russian Academy of Sciences.
Russian Federation

 Natalia A. Baidakova: Cand. Sci. (Phys.−Math.), Junior Researcher.

7 Academicheskaya Str., Afonino, Nizhny Novgorod region, Kstovsky district 603087.



References

1. Soref R. A., Perry C. H. Predirect bandgap of the new semiconductor SiGeSn. J. Appl. Phys. 1991, vol. 69, no. 1, pp. 539—541. DOI: 10.1063/1.347704

2. Moontragoon P., Ikonić Z., Harrison P. Band structure calculation of Si—Ge—Sn alloys: achieving direct bandgap materials. Semicond. Sci. Technol. 2007. vol. 22, no. 7, pp. 742—748. DOI: 10.1088/0268−1242/22/7/012

3. Du W., Ghetmiri S. A., Conley B. R., Mosleh A., Nazzal A., Soref R. A., Sun G., Tolle J., Margetis J., Naseem H. A., Yu S.−Q. Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx. Appl. Phys. Lett. 2014, vol. 105, no. 5, pp. 051104–1—4. DOI: 10.1063/1.4892302

4. Senaratne C. L., Gallagher J. D., Aoki T., Kouvetakis J., Menéndez J. Advances in light emission from group−IV alloys via lattice engineering and n−type doping based on custom−designed chemistries. Chem. Mater. 2014, vol. 26, no. 20, pp. 6033—6041. DOI: 10.1021/cm502988y

5. Wirths S., Buca D., Mantl S. Si—Ge—Sn alloys: From growth to applications. Progress in crystal growth and characterization of materials. 2016, vol. 62, no. 1, pp. 1—39. DOI: 10.1016/j.pcrysgrow.2015.11.001

6. Wirths S., Geiger R., von den Driesch N., Mussler G., Stoica T., Mantl S., Ikonic Z., Luysberg M., Chiussi S., Hartman J. M., Sigg H., Faist J., Buca D., Grützmacher D. Lasing in direct−bandgap GeSn alloy grown on Si. Nature Photonics. 2015, vol. 9, pp. 88—92. DOI: 10.1038/ nphoton.2014.321

7. Asano T., Terashima T., Yamaha T., Kurosawa M., Takeuchi W., Taoka N., Nakatsuka O., Zaima S. Epitaxial growth and crystalline properties of Ge1−x−ySixSny on Ge(001) substrates. Solid−State Electronics. 2015, vol. 110, pp. 49—53. DOI: 10.1016/j.sse.2015.01.006

8. Esteves R. J. A., Hafiz S., Demchenko D. O., Özgur Ü., Arachchige I. U. Ultra−small Ge1−xSnx quantum dots with visible photoluminescence. Chem. Commun. 2016, vol. 52, no. 78. pp. 11665—11668. DOI: 10.1039/c6cc04242b

9. Wirths S., Tiedemann A. T., Ikonic Z., Harrison P., Holländer B., Stoica T., Mussler G., Myronov M., Hartmann J. M., Grützmacher D., Buca D., Mantl S. Band engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors. Appl. Phys. Lett. 2013, vol. 102, no. 19, pp. 192103–1—4. DOI: 10.1063/1.4805034

10. von den Driesch N., Stange D., Wirths S., Mussler G., Holländer B., Ikonic Z., Hartmann J. M., Stoica T., Mantl S., Grützmacher D., Buca D. Direct bandgap group IV epitaxy on Si for laser applications. Chem. Mater. 2015, vol. 27, no. 13, pp. 4693—4702. DOI: 10.1021/acs.chemmater.5b01327

11. Kato K., Asano T., Taoka N., Sakashita M., Takeuchi W., Nakatsuka O., Zaima S. Robustness of Sn precipitation during thermal oxidation of Ge1−xSnx on Ge(001). Jpn. J. Appl. Phys. 2014. vol. 53, no. 8S1, pp. 08LD04 − 1 − 8. DOI: 10.7567/JJAP.53.08LD04

12. Taoka N., Asano T., Yamaha T., Terashima T., Nakatsuka O., Costina I., Zaumseil P., Capellini G., Zaima S., Schroeder T. Non−uniform depth distributions of Sn concentration induced by Sn migration and desorption during GeSnSi layer formation. Appl. Phys. Lett. 2015, vol. 106, no. 6, pp. 061107–1—5. DOI: 10.1063/1.4908121

13. van de Walle C.G. Band lineups and deformation potentials in the model−solid theory. Phys. Rev. B., 1989, vol. 39, no. 3, pp. 1871—1883. DOI: 10.1103/PhysRevB.39.1871

14. El Kurdi M., Sauvage S., Fishman G., Boucaud P. Band−edge alignment of SiGe/Si quantum wells and SiGe/Si self−assembled islands. Phys. Rev. B., 2006, vol. 73, no. 19, pp. 195327–1—9. DOI: 10.1103/ PhysRevB.73.195327

15. Jaros M. Simple analytic model for heterojunction band offsets. Phys. Rev. B., 1988, vol. 37, no. 12, pp. 7112—7114. DOI: 10.1103/PhysRevB.37.7112

16. Moontragoon P., Soref R., Ikonic Z. The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications. J. Appl. Phys., 2012, vol. 112, no. 7, pp. 073106–1—8. DOI: 10.1063/1.4757414

17. Fischer I. A., Wendav T., Augel L., Jitpakdeebodin S., Oliveira F., Benedetti A., Stefanov S., Chiussi S., Capellini G., Busch K., Schulze J. Growth and characterization of SiGeSn quantum well photodiodes. Optics Express, 2015, vol. 23, no. 19, pp. 25048—25057. DOI: 10.1364/OE.23.025048

18. Attiaoui A., Moutanabbir O. Indirect−to−direct band gap transition in relaxed and strained Ge1−x−ySixSny ternary alloys. J. Appl. Phys., 2014, vol. 116, no. 6, pp. 063712–1—15. DOI: 10.1063/1.4889926

19. Timofeev V. A., Nikiforov A. I., Tuktamyshev A. R., Yesin M. Yu., Mashanov V. I., Gutakovskii A. K., Baidakova N. A. Strained multilayer structures with pseudomorphic GeSiSn layers. Semiconductors, 2016, vol. 50, no. 12, pp. 1585—1589. DOI: 10.1134/S106378261612023X

20. Nikiforov A. I., Mashanov V. I., Timofeev V. A., Pchelyakov O. P., Cheng H.−H. Reflection high energy electron diffraction studies on SixSnyGe1−x−y on Si(100) molecular beam epitaxial growth. Thin Solid Films, 2014, vol. 557, pp. 188—191. DOI: 10.1016/j.tsf.2013.11.128


Review

For citations:


Timofeev V.A., Nikiforov A.I., Tuktamyshev A.R., Bloshkin A.A., Mashanov V.I., Teys S.A., Loshkarev I.D., Baidakova N.A. MULTILAYERED PERIODICAL STRUCTURES WITH ELASTICALLY STRAINED GESISN LAYERS AND GESISN NANOISLANDS. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(1):38-44. (In Russ.) https://doi.org/10.17073/1609-3577-2017-1-38-44

Views: 935


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)