MICRO CARBON ADDITIVE FOR PERFORMANCE IMPROVEMENT OF THE LEAD−ACID BATTERY
https://doi.org/10.17073/1609-3577-2017-1-67-76
Abstract
The features and changes in the microstructure of the negative electrode material of a lead−acid battery appearing after adding of carbon black and hybrid carbon were investigated. As shown by X−ray phase analysis and scanning electron microscopy, carbon black and hybrid carbon additives influence the electrode material structure causing changes in soaking and formation processes. In accordance with the structural research, hybrid carbon increases the dispersity of the negative active material and impedes sulfate ions diffusion into its internal layers. Electrical tests of lead−acid batteries including high rate partial state of charge cycling were conducted and the roles of each kinds of carbon additives were estimated. It was shown that the addition of hybrid carbon increases the cycle life of the batteries at high rate partial state of charge operation, improving charge acceptance approximately by 9 % and deep discharge stability. Capacity loss after deep discharge is less than 4.4 % if hybrid carbon is used as an additive and 7.2 % in case of carbon black.
About the Authors
A. P. KuzmenkoRussian Federation
Alexander P. Kuzmenko: Dr. Sci. (Phys.−Math.), Professor of Department of Engineering Physics and Nanotechnology.
94 50 let Oktyabrya Str., Kursk 305040.
E. A. Grechushnikov
Russian Federation
Eugene A. Grechushnikov: Cand. Sci. (Chem.).
94 50 let Oktyabrya Str., Kursk 305040.
V. A. Kharseev
Russian Federation
Viktor A. Kharseev: Post−Graduated Student.
94 50 let Oktyabrya Str., Kursk 305040.
A. N. Salnikov
Russian Federation
Artem N. Salnikov: Master Student.
94 50 let Oktyabrya Str., Kursk 305040.
References
1. Schaeck S., Stoermer A. O., Kaiser F., Koehler L., Albers J., Kabza H. Lead−acid batteries in micro−hybrid applications. Part I. Selected key parameters. J. Power Sources, 2011, vol. 196, no. 3, pp. 1541—1554. DOI: 10.1016/j.jpowsour.2010.08.077
2. Bača P., Micka K., Křivík P., Tonar K., Tošer P. Study of the influence of carbon on the negative lead−acid battery electrodes. J. Power Sources, 2011, vol. 196, no. 8, pp. 3988—3992. DOI: 10.1016/j.jpowsour.2010.11.046
3. Pavlov D., Nikolov P., Rogachev T. Influence of carbons on the structure of the negative active material of lead−acid batteries and on battery performance. J. Power Sources, 2011, vol. 196, no. 11, pp. 5155—5167. DOI: 10.1016/j.jpowsour.2011.02.014
4. Kuzmenko A. P., Grechushnikov E. A., Kharseev V. A. Effect of carbon on structure of a positive paste and technical and operating characteristics of lead acid storage cells. Budushchee nauki − 2013: materialy Mezhdunarodnoi molodezhnoi nauchnoi konferentsii = Future of Science − 2013: materials of the International Youth Scientific Conference. Kursk: Universitetskaya kniga, 2013, vol. 3, pp. 303—307. (In Russ.)
5. Swogger S. W., Everill P., Dubey D. P., Sugumaran N. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance. J. Power Sources, 2014, vol. 261, pp. 55—63. DOI: 10.1016/j.jpowsour.2014.03.049
6. Saravanan M., Sennu P., Ganesan M., Ambalavanan S. Multi−walled carbon nanotubes percolation network enhanced the performance of negative electrode for lead−acid battery. J. Electrochem. Soc., 2013, vol. 160, no. 1, pp. A70—A76 DOI: 10.1149/2.062301jes
7. Srivastava S. Sorption of divalent metal ions from aqueous solution by oxidized carbon nanotubes and nanocages: A review. Adv. Mater. Lett., 2013, vol. 4, no. 1, pp. 2—8. DOI: 10.5185/amlett.2013.icnano.110
8. Kuzmenko A. P., Grechushnikov E. A., Kharseev V. A., Dobromyslov M. B. Influence of electroconductive additives in the positive electrode material on morphology, structure and characteristics of the lead−acid batteries. J. Nano− Electron. Phys., 2014, vol. 6, no. 3, pp. 03028−1—03028−4.
9. Kuzmenko A. P., Stepanov A. V., Niyazi F. F., Ivanov A. M., Grechushnikov E. A., Kharseev V. A. Influence mix, structure and properties of battery electrode pastes. Izvestiya Yugo−Zapadnogo gosudarstvennogo universiteta = Proceedings of the South West State University, 2012, no. 2, pt. 1, pp. 102—109. (In Russ.)
10. Kuzmenko A. P., Grechushnikov E. A., Kharseev V. A., Dobromyslov M. B. Microstructural barrier−locking formation mechanism of dispersed current−forming components of current power supply. J. Nano− Electron. Phys., 2014, vol. 6, no. 3, pp. 03025− 1— 03025−3. URL: http://nbuv.gov.ua/UJRN/jnef_2014_6_3_27
11. Rand D. A. J., Garche J., Moseley P. T., Parker C. D. Valve− regulated lead−acid batteries. Amsterdam: Elsevier, 2004. 602 p. DOI: 10.1016/B978-044450746-4/50000-3
12. Morteza Moradi, Zargham Bagheri, Ali Bodaghi. Li interactions with the B40 fullerene and its application in Li−ion batteries: DFT studies. Physica E: Low−dimensional Systems and Nanostructures, 2017, vol. 89, pp. 148—154 DOI: 10.1016/j.physe.2017.02.018
13. Li Zhao, Baishuang Chen, Dianlong Wang. Effects of electrochemically active carbon and indium (III) oxide in negative plates on cycle performance of valve−regulated lead−acid batteries during high−rate partial−state−of−charge operation. J. Power Sources, 2013, vol. 231, pp. 34—38. DOI: 10.1016/j.jpowsour.2012.12.083
14. Lam L. T., Louey R., Haigh N. P., Lim O. V., Vella D. G., Phyland C. G., Vu L. H., Furukawa J., Takada T., Monma D., Kano T. VRLA Ultrabattery for high−rate partial−state−of−charge operation. J. Power Sources, 2007, vol. 174, no. 1, pp. 16—29. DOI: 10.1016/j.jpowsour.2007.05.047
15. Jiayuan Xiang, Ping Ding, Hao Zhang, Xianzhang Wu, Jian Chen, Yusheng Yang. Beneficial effects of activated carbon additives on the performance of negative lead−acid battery electrode for high−rate partial−state−of−charge operation. J. Power Sources, 2013, vol. 241, pp.150—158. DOI: 10.1016/j.jpowsour.2013.04.106
16. Moseley P. T. High rate partial−state−of−charge operation of VRLA batteries. J. Power Sources, 2004, vol. 127, no. 1–2, pp. 27—32. DOI: 10.1016/j.jpowsour.2003.09.005
17. Ebner E., Burow D., Börger A., Wark M., Atanassova P., Valenciano J. Carbon blacks for the extension of the cycle life in flooded lead acid batteries for micro−hybrid applications. J. Power Sources, 2013, vol. 239, pp. 483—489. DOI: 10.1016/j.jpowsour.2013.03.124
18. Atanassova P., Kossyrev P., Moeser G., Kyrlidis A., Oljaca M. Carbons in lead−acid batteries — structure and properties. 8−th International conference on lead−acid batteries. Albena, 2011, pp. 5—8.
19. Pavlov D. Lead−acid batteries: Science and technology. A handbook of lead acid battery technology and its influence on the product. Amsterdam; Oxford: Elsevier Science, 2011. 656 p. URL: https://www.elsevier.com/books/lead-acid-batteries-science-andtechnology/pavlov/978-0-444-52882-7
20. Burbank J. Anodic oxidation of the basic sulfates of lead. J. Electrochem. Soc., 1966, vol. 113, no. 1, pp. 10—14. DOI: 10.1149/1.2423844
21. Prout L. Aspects of lead/acid battery technology. 4. Plate formation. J. Power Sources, 1993, vol. 41, no. 1–3, pp. 195—219. DOI: 10.1016/0378-7753(93)85012-D
22. Kuzmenko A. P., Grechushnikov E. A., Kharseev V. A. Effect of carbon nanostructures in a negative electrode material on the performance haracteristics of the lead−acid battery. Izvestiya Yugo−Zapadnogo gosudarstvennogo universiteta. Ser. Tekhnika i tekhnologii = Proceedings of the South West State University. Technics and Technologies, 2015, no. 1, pt. 1, pp. 73—84.
Review
For citations:
Kuzmenko A.P., Grechushnikov E.A., Kharseev V.A., Salnikov A.N. MICRO CARBON ADDITIVE FOR PERFORMANCE IMPROVEMENT OF THE LEAD−ACID BATTERY. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(1):67-76. (In Russ.) https://doi.org/10.17073/1609-3577-2017-1-67-76