Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

INFLUENCE OF EXTRUSION TEMPERATURE ON THE FORMATION OF P–TYPE CONDUCTIVITY BI0.5SB1.5TE3 STRUCTURE

https://doi.org/10.17073/1609-3577-2016-1-22-27

Abstract

This article deals with regularities of defect structure and texture formation for extrusion of thermoelectric materials at different temperatures. The authors consider the influence of competition between deformation processes, return and recrystallization on the structure and properties of extruded materials. The experiment uses X–ray diffraction method, Harman’s method and the method of hydrostatic weighing for thermoelectric samples at different extrusion temperatures. The texture, physical properties and density of thermo electric materials change nonmonotonically depending on the extrusion temperature. The research allows establishing optimum extrusion temperature for thermoelectric materials achieving the greatest thermoelectric figure of merit. The research shows that the thermoelectric material has the best properties after extrusion at 400 °C.

About the Authors

I. V. Tarasova
National University of Science and Technology MISiS.
Russian Federation

Irina V. Tarasova — Postgraduate Student. 

4 Leninsky Prospekt, Moscow 119049.



V. T. Bublik
National University of Science and Technology MISiS.
Russian Federation

Vladinir T. Bublik — Dr. Sci. (Phys.−Math.), Professor.

4 Leninsky Prospekt, Moscow 119049.



References

1. Dmitriev A. V., Zvyagin I. P. Current trends in the physics of thermoelectric materials. Phys. Usp., 2010, vol. 53, pp. 789—803. DOI: 10.3367/UFNe.0180.201008b.0821

2. Lin J. C., Huang Y., She K. D., Li M. C., Chen J. H., Kuo S. Development of low−cost microthermoelectric Coolers Utilizing MEMS Technology. Sensors and Actuators A: Physical, 2008, vol. 148, pp. 176—185.

3. Rahmoun M., Hachami K., Touil A., Bellach B., Bailich M., Merdani A. New thermoelectric sensor adapted to realize an infrared radiations detector. Active and Passive Electronic Components, 2011. DOI: 10.1155/2011/708361

4. Peranio N., Winkler M., Bessas D., Aabdin Z., Koenig J., Boettner H., Hermann R. P., Eibl O. Room−temperature MBE deposition, thermoelectric properties, and advanced structural characterization of binary Bi2Te3 and Sb2Te3 thin films. J. Alloys and Compdouds, 2012, vol. 521, pp. 163—173. DOI: 10.1016/j.jallcom.2012.01.108

5. Crabtree G. W., Lewis N. S. Solar energy conversion. Physics Today, 2007, no. 60, pp. 37—42. DOI: 10.1063/12718755

6. Poudel B., Hao Q., Ma Y., Lan Yu., Minnich A., Yu B., Yan X., Wang D., Muto A., Vashaee D., Chen X., Liu J., Dresselhaus M. S., Chen G., Ren Zh. High−thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Sciencexpress, 2008, vol. 1, pp. 1—3. DOI: 10.1126/science.1156446

7. Bulat L. P., Bublik V. T., Drabkin I. A., Karataev V. V., Osvenskii V. B., Pivovarov G. I., Pshenai−Severin D. A., Tat’yanin E. V., Tabachkova N. Yu. Volumetric nanostructured thermoelectrics based on bismuth telluride. Termoelektrichestvo, 2009, no. 1, pp. 70—75. (In Russ.)

8. Bulat L. P., Osvenskii V. B., Pshenai−Severin D. A. Influence of grain size distribution on the lattice thermal conductivity of Bi2Te3—Sb2Te3−based nanostructured materials. Physics of the Solid State, 2013, vol. 55, no. 12, pp. 2442—2449. DOI: 10.1134/S1063783413120081

9. Sabo E. P. Technology of chalcogenide thermoelements. Physical basis. Termoelektrichestvo, 2006, no. 1, pp. 45—66. (In Russ.)

10. Ivanova L. D., Petrova L. I., Granatkina Yu. V., Zemskov V. S., Sokolov O. B., Skipidarov S. Ya., Duvankov N. I. Extruded materials for thermoelectric coolers. Inorganic Materials, 2008, vol. 44, no. 7, pp. 687—691. DOI: 10.1134/S0020168508070030

11. Kim S. S., Aizawa T. Crystallographic anisotropy control of n−type Bi—Te—Se thermoelectric materials via bulk mechanical alloying and shear extrusion. Materials Transactions, 2004, vol. 45, no. 3, pp. 918—924. DOI: 10.2320/matertrans.45.918

12. Gorelik S. S. Recrystallization in metals and alloys. Moscow: MIR, 1981. Pp. 325—369.

13. Gol’tsman B. M., Kudinov V. A., Smirnov I. A. Semiconductor thermoelectric materials based on Bi2Te3. Moscow: Nauka, 1972. (In Russ.)

14. Eibl O., Nielsch K., Peranio N., Völklein F. Thermoelectric Bi2Te3 nanomaterials. New York: Wiley, 2015. Pp. 167—184.

15. Shvangiradze P. P., Sabo E. P. Effects of electrically active point defects on the structure and electrical properties of Bi—Te—Se and Sb—Bi—Te solid solutions. Inorganic Materials, 2000, vol. 36, pp. 1104—1107. DOI: 10.1007/BF02758925


Review

For citations:


Tarasova I.V., Bublik V.T. INFLUENCE OF EXTRUSION TEMPERATURE ON THE FORMATION OF P–TYPE CONDUCTIVITY BI0.5SB1.5TE3 STRUCTURE. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(1):22-27. (In Russ.) https://doi.org/10.17073/1609-3577-2016-1-22-27

Views: 876


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)