Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

INFLUENCE OF PLASTIC FORMATION PARAMETERS ON STRUCTURAL CHARACTERISTICS OF THERMOELECTRIC MATERIAL DURING HOT EXTRUSION

https://doi.org/10.17073/1609-3577-2016-1-34-42

Abstract

We used mathematical modeling to compare the stress and deformation in a Bi0.4Sb1.6Te3 solid solution base thermoelectric material for extrusion through different diameter dies. The results show that extrusion through a 20 mm diameter die produces a more inhomogeneous deformation compared with extrusion through a 30 mm diameter die. Extrusion through a die of a larger diameter produces a structure that is coarser but has a more homogeneous grain size distribution. The degree of preferential grain orientation is higher for extrusion through a larger diameter die. We found a change in the lattice parameter of the solid solution along the extruded rod, correlating with detect formation during extrusion. The concentration of vacancies is higher for extrusion through a smaller diameter die. This difference between the structures results from a more intense dynamic recrystallization for a smaller diameter die. Increasing the die diameter and lowering the extrusion temperature allow retaining the thermoelectric properties of the material due to a better texture.

About the Authors

A. I. Prostomolotov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences.
Russian Federation

Anatoly I. Prostomolotov — Dr. Sci. (Eng.), Leading Researcher .

101–1 Prospekt Vernadskogo, Moscow 119526.



M. V. Mezhennii
JSC Optron.
Russian Federation

Mikhail V. Mezhennyi — Head of Laboratory.

53 Shcherbakovskaya Str., Moscow 105187.



N. A. Verezub
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences.
Russian Federation

Nataliya A. Verezub — Cand. Sci. (Phys.− Math.), Senior Researcher. 

101–1 Prospekt Vernadskogo, Moscow 119526.



M. G. Lavrentev
JSC State Research and Design Institute of Rare Metal Industry «Giredmet».
Russian Federation

Mikhail G. Lavrentev — Senior Researcher.

5–1 B. Tolmachevsky Lane, Moscow 119017.



V. B. Osvenskii
JSC State Research and Design Institute of Rare Metal Industry «Giredmet».
Russian Federation

Vladimir B. Osvenskii — Head of Laboratory.

5–1 B. Tolmachevsky Lane, Moscow 119017.



References

1. Sabo Ye. P. Technology of chalcogen thermoelements. Physical foundations. J. Thermoelectricity, 2005, vol. 3, pp. 52—68.

2. Suhir E., Shakouri A. Assembly bonded at the ends: Could thinner and longer legs result in a lower thermal stress in a thermoelectric module design? J. Appl. Mech., 2012, vol. 79, no. 6, pp. 061010—061018. DOI: 10.1115/1.4006597

3. Keshavarz M. K., Vasilevskiy D., Masut R. A., Turenne S. P−type bismuth telluride−based composite thermoelectric materials produced by mechanical alloying and hot extrusion. J. Electronic Mater., 2013, vol. 42, no. 7, pp. 1429—1435. DOI: 10.1007/s11664-0122284-2

4. Yun Zheng, Hongyao Xie, Shengcheng Shu, Yonggao Yan, Han Li, Xinfeng Tang. High−temperature mechanical and thermoelectric properties of p−type Bi0.5Sb1.5Te3 commercial zone melting ingots. J. Electronic Mater., 2014, vol. 43, no. 6, pp. 2017—2022. DOI: 10.1007/s11664-013-2938-8

5. Ye Xiao, Junyou Yang, Gen Li, Ming Liu, Liangwei Fu, Yubo Luo, Weixin Li, Jiangying Peng. Enhanced thermoelectric and mechanical performance of polycrystalline p−type Bi0.5Sb1.5Te3 by a traditional physical metallurgical strategy. Intermetallics, 2014, vol. 50, pp. 20—27. DOI: 10.1016/j.intermet.2014.02.010

6. Xu Z. J., Hu L. P., Ying P. J., Zhao X. B., Zhu T. J. Enhanced thermoelectric and mechanical properties of zone melted p−type (Bi,Sb)2Te3 thermoelectric materials by hot deformation. Acta Materialia, 2015, vol. 84, pp. 385—392. DOI: 10.1016/j.actamat.2014.10.062

7. Zheng Y., Zhang Q., Su X., Xie H., Shu S., Chen T., Tan G., Yan Y., Tang X., Uher C., Snyder G. J. Mechanically robust BiSbTe alloys with superior thermoelectric performance: A case study of stable hierarchical nanostructured thermoelectric materials. Adv. Energy Mater., 2015, vol. 5, no. 5, pp. 1401391—1401399. DOI: 10.1002/aenm.201401391

8. Ravi V., Firdosy S., Caillat T., Brandon E., Van Der Walde K., Maricic L., A. Sayir Thermal expansion studies of selected high− temperature thermoelectric materials. J. Electronic Mater., 2009, vol. 38, no. 7, pp. 1433—1442. DOI: 10.1007/s11664-009-0734-2

9. Lognoné Q., Gascoin F., Lebedev O. I., Lutterotti L., Gascoin S., Chateigner D. Quantitative texture analysis of spark plasma textured n−Bi2Te3. J. Amer. Ceram. Soc., 2014, vol. 97, no. 7, pp. 2038—2045. DOI: 10.1111/jace.12970

10. Yuki Nagami, Kenji Matsuoka, Takahiro Akao, Tetsuhiko Onda, Takahiro Hayashi, Zhong−Chun Chen. Preparation and characterization of Bi0,4Sb1,6Te3 bulk thermoelectric materials. J. Electronic Mater., 2014, vol. 43, no. 6, pp. 2262—2268. DOI: 10.1007/s11664-014-3038-0

11. Lavrent’ev M. G., Mezhenny M. V., Osvensky V .B., Prostomolotov A. I. Mathematical modeling of extrusion process of thermoelectric material. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2012, vol. 3, pp. 35—40. (In Russ.). DOI: 10.17073/1609-3577-2012-3-35-40

12. Eger J. K. Uprugost’, prochnost’ i tekuchest’ [Elasticity Strength and Fluidity]. Moscow: Mashgiz, 1961. 170 p.

13. Horrobin D. J., Nedderman R. M. Die entry pressure drops in paste extrusion. Chemical Engineering Science, 1998, vol. 53, no. 18, pp. 3215—3225. DOI: 10.1016/S0009-2509(98)00105-5

14. Tiernan P., Hillery M. T., Graganescu B., Gheorghe M. Modelling of cold extrusion with experimental verification. J. Materials Processing Technology, 2005, vol. 168, no. 2, pp. 360—366. DOI: 10.1016/j.jmatprotec.2005.02.249

15. Yang J., Chen R., Fan X., Zhu W., Bao S., Duan X. Microstructure control and thermoelectric properties improvement to n−type bismuth telluride based materials by hot extrusion. J. Alloys and Compounds, 2007, vol. 429, no. 1–2, pp. 156—162. DOI: 10.1016/j.jallcom.2006.04.030

16. Lavrentyev M. G., Osvensky V. B., Mezhennyi M. V., Prostomolotov A. I., Bublik V. T., Tabachkova N. Yu. Experiment−calculated study on structure formation of thermoelectric material based on solid solutions of bismuth and antimony chalcogenides prepared by hot extrusion method. Journal of Thermoelectricity, 2012, vol. 14, no. 4, pp. 33—38. URL: http://nbuv.gov.ua/UJRN/jtherel_2012_4_6

17. Mezhenniy M. V., Lavrentyev M. G., Osvenskiy V. B., Voronov M. V., Prostomolotov A. I. Simulation of plastic state of thermoelectric bismuth telluride−based material during hot extrusion. Tambov University Reports. Series Natural and Technical Sciences, 2013, vol. 18, no. 4, pp. 1976—1981. (In Russ.)


Review

For citations:


Prostomolotov A.I., Mezhennii M.V., Verezub N.A., Lavrentev M.G., Osvenskii V.B. INFLUENCE OF PLASTIC FORMATION PARAMETERS ON STRUCTURAL CHARACTERISTICS OF THERMOELECTRIC MATERIAL DURING HOT EXTRUSION. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(1):34-42. (In Russ.) https://doi.org/10.17073/1609-3577-2016-1-34-42

Views: 885


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)