Spectral diagnostics of vibrational centers in crystals with hydrogen bonds
https://doi.org/10.17073/1609-3577-2019-1-35-44
Abstract
About the Authors
V. M. Timokhin93 Lenin’s Avenue, Novorossisk, Krasnodar Region 353900, Russia
Viktor M. Timokhin: Cand. Sci. (Phys.-Math.), Assistant Professor, Professor of RAE
V. M. Garmash
15 Butlerova Str., Moscow 117342, Russia
Vladimir M. Garmash: Dr. Sci. (Eng.), Professor
V. A. Tedzhetov
4 Leninsky Prospekt, Moscow 119049, Russia
Valentin A. Tedzhetov: Leading Engineer-Programmer
References
1. Pat. 2566389 (RF). Termostimulirovannyi sposob diagnostiki anizotropii opticheskikh osei kristallov [Thermally stimulated current method of diagnosis of the anisotropy of the optical axes of the crystals]. V. M. Timokhin, 2015. (In Russ.)
2. Pat. 2442972 (RF). Sposob opredeleniya polozheniya opticheskoi osi fazovoi anizotropnoi kristallicheskoi plastinki λ/4 [Method for determining the position of the optical axis of the phase anisotropic crystal plate λ/4]. O. Yu. Pikul, 2012. (In Russ.)
3. Petrenko V. F., Ryzhkin V. F. Dielectric properties of Ice in the presence of space charge. Phys. Stat. Solidi (b), 1984, vol. 121, no. 1, pp. 421—427. DOI: 10.1002/pssb.2221210145
4. Tonkonogov M. P. Dielectric spectroscopy of hydrogen-bonded crystals, and proton relaxation. Physics-Uspekhi, 1998, vol. 41, no. 1, pp. 25—48. DOI: 10.1070/PU1998v041n01ABEH000328
5. Belushkin A. V. Novel approaches to the analysis of crystal structure. A nonstandard method for the study of atomic and molecular diffusion mechanisms. Physics-Uspekhi, 2003, vol. 46, no. 11, pp. 1219—1223. DOI: 10.1070/PU2003v046n11ABEH001672
6. Timokhin V. M. The mechanism of dielectric relaxation and proton conductivity in an α-LiIO3 nanostructure. Russian Physics Journal, 2009, vol. 52, no. 3, pp. 269—274. DOI: 10.1007/s11182-009-9221-8
7. Lee C.-W., Lee P.-R., Kim Y.-K., Kanga H. Mechanistic study of proton transfer and H/D exchange in ice films at low temperatures (100—140 K). J. Chem. Phys., 2007, vol. 127, no. 8, pp. 084701. DOI: 10.1063/1.2759917
8. Shalimova K. V. Fizika poluprovodnikov [Physics of semiconductors]. Moscow: Energoatomizdat, 1985, 392 p. (In Russ.)
9. Blistanov A. A. Kristally kvantovoi i nelineinoi optiki [Crystals for quantum and nonlinear optics]. Moscow: MISiS, 2000, 760 p. (In Russ.)
10. Shishelova T. I., Sozinova T. V., Konovalov A. N. Workshop on spectroscopy. Water in minerals: tutorial. Moscow: Publishing house «Akademiya Estestvoznaniya», 2010, 210 p. (In Russ.)
11. Fillaux F. Proton transfer in the KHCO3 and benzoic acid crystals: A quantum view. J. Molecular Structure, 2007, vols. 844—845, pp. 308—318. DOI: 10.1016/j.molstruc.2007.05.046
12. Voronina T. V., Slobodov A. A. Spectroscopic and thermodynamic study of heavy water. J. Opt. Technol., 2011, vol. 78, no. 3, pp. 156—160. DOI: 10.1364/JOT.78.000156
13. Timokhin V. M. Garmash V. M., Tedzhetov V. A. Infrared spectroscopy and tunneling of protons in crystals with hydrogen bonds. Optics and Spectroscopy, 2017, vol. 122, no. 6, pp. 889—895. DOI: 10.1134/S0030400X17060224
14. Plyusnina I. I. Infrakrasnye spektry silikatov [Infrared spectra of silicates]. Moscow: MGU, 1967, 190 p. (In Russ.)
15. Bredikhin V. N., Dmitrienko L. A., Kiseleva N. V., Korolikhin V. V., Kotova M. A., Novikov M. A., Rubakha V. I. Experimental study of the nature of the infrared absorption of α-LiIO3 single crystals. Kristallografiya, 1982, vol. 27, no. 5, pp. 928—931. (In Russ.)
16. Egorov N. B., Shagalov V. V. Infrakrasnaya spektroskopiya redkikh i rasseyannykh elementov [Infrared spectroscopy of rare and scattered elements]. Tomsk: Izd-vo TPU, 2008, 20 p. (In Russ.)
17. Yaroslavtsev A. B. Proton conductivity of inorganic hydrates. Russ. Chem. Rev., 1994, vol. 63, no. 5, pp. 429—435. DOI: 10.1070/RC1994v063n05ABEH000095
18. Fedorova S. V. Physical and chemical and electric indicators of the micalex. Theoretical & Applied Science, 2015, vol. 24, no. 4, pp. 145—148. DOI: 10.15863/TAS.2015.04.24.25
19. Shishelova T. I., Kolodeznikova A. N., Shulga V. V. Assess the grade of mineral raw materials the method of IR spectroscopy. Fundamental Research, 2015, no. 2 (pt 15), pp. 3294—3298. URL: http://www.fundamental-research.ru/ru/article/view?id=37771 (In Russ.)
20. Papko L. F., Kravchuk A. P. Fiziko-khimicheskie metody issledovaniya neorganicheskikh veshchestv i materialov [Physico-chemical methods of research of inorganic substances and materials]. Minsk: Belarusian State Technological University, 2013, 95 p. URL: https://elib.belstu.by/handle/123456789/25560 (In Russ.)
21. Timokhin V. M., Garmash V. M., Tarasov V. P. NMR spectra and translational diffusion of protons in crystals with hydrogen bonds. Phys. Solid State, 2015, vol. 57, no. 7, pp. 1314—1317. DOI: 10.1134/S1063783415070331
22. Ivanov Yu. N., Sukhovsky A. A., Aleksandrova I. P., Totz J., Michel D. The mechanism of proton conductivity in the crystals of NH4 SO4. Fizika tverdogo tela, 2002, vol. 44, no. 6, pp. 1032—1038. (In Russ.)
23. Maeno N. Nauka o l’de [Science of ice]. Moscow: Mir, 1988, 230 p. (In Russ.)
Review
For citations:
Timokhin V.M., Garmash V.M., Tedzhetov V.A. Spectral diagnostics of vibrational centers in crystals with hydrogen bonds. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(1):35-44. (In Russ.) https://doi.org/10.17073/1609-3577-2019-1-35-44