Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Spectral diagnostics of vibrational centers in crystals with hydrogen bonds

https://doi.org/10.17073/1609-3577-2019-1-35-44

Abstract

In practical application of crystals in optoelectronics and laser technology it is necessary to know the direction of optical axes and types of oscillatory centers, which is a relevant and necessary condition. In this paper, the infrared spectra of transmission and absorption of hexagonal crystals of lithium iodate α-LiIO3, grown by open evaporation in H2O and D2O solutions, as well as natural lamellar crystals of phlogopite and muscovite monoclinic crystal are investigated. The band gap width of the investigated crystals is determined by transmission spectra. In the absorption spectra there were determined activation energy and wavelength of the oscillatory centers that are associated with the vibrations of protons, hydronium ions Н3О+, protium H+, OH groups and molecules HDO. The good correlation of the parameters of infrared spectra with the spectra of thermally stimulated depolarization currents and NMR spectra has shown. The possibility of diagnostics of types of oscillatory centers by means of infrared spectra is considered, which also allows to find out the direction of optical axes. The obtained results allow to use IR spectra to determine not only the types of vibrational centers, but also the presence of anisotropy of the crystal lattice of the studied crystals.

About the Authors

V. M. Timokhin
Admiral Ushakov State Maritime University

93 Lenin’s Avenue, Novorossisk, Krasnodar Region 353900, Russia

Viktor M. Timokhin: Cand. Sci. (Phys.-Math.), Assistant Professor, Professor of RAE



V. M. Garmash
Scientific and Technological Center of Unique Instrumentation» of the Russian Academy of Sciences

15 Butlerova Str., Moscow 117342, Russia

Vladimir M. Garmash: Dr. Sci. (Eng.), Professor



V. A. Tedzhetov
National University of Science and Technology MISiS

4 Leninsky Prospekt, Moscow 119049, Russia

Valentin A. Tedzhetov: Leading Engineer-Programmer



References

1. Pat. 2566389 (RF). Termostimulirovannyi sposob diagnostiki anizotropii opticheskikh osei kristallov [Thermally stimulated current method of diagnosis of the anisotropy of the optical axes of the crystals]. V. M. Timokhin, 2015. (In Russ.)

2. Pat. 2442972 (RF). Sposob opredeleniya polozheniya opticheskoi osi fazovoi anizotropnoi kristallicheskoi plastinki λ/4 [Method for determining the position of the optical axis of the phase anisotropic crystal plate λ/4]. O. Yu. Pikul, 2012. (In Russ.)

3. Petrenko V. F., Ryzhkin V. F. Dielectric properties of Ice in the presence of space charge. Phys. Stat. Solidi (b), 1984, vol. 121, no. 1, pp. 421—427. DOI: 10.1002/pssb.2221210145

4. Tonkonogov M. P. Dielectric spectroscopy of hydrogen-bonded crystals, and proton relaxation. Physics-Uspekhi, 1998, vol. 41, no. 1, pp. 25—48. DOI: 10.1070/PU1998v041n01ABEH000328

5. Belushkin A. V. Novel approaches to the analysis of crystal structure. A nonstandard method for the study of atomic and molecular diffusion mechanisms. Physics-Uspekhi, 2003, vol. 46, no. 11, pp. 1219—1223. DOI: 10.1070/PU2003v046n11ABEH001672

6. Timokhin V. M. The mechanism of dielectric relaxation and proton conductivity in an α-LiIO3 nanostructure. Russian Physics Journal, 2009, vol. 52, no. 3, pp. 269—274. DOI: 10.1007/s11182-009-9221-8

7. Lee C.-W., Lee P.-R., Kim Y.-K., Kanga H. Mechanistic study of proton transfer and H/D exchange in ice films at low temperatures (100—140 K). J. Chem. Phys., 2007, vol. 127, no. 8, pp. 084701. DOI: 10.1063/1.2759917

8. Shalimova K. V. Fizika poluprovodnikov [Physics of semiconductors]. Moscow: Energoatomizdat, 1985, 392 p. (In Russ.)

9. Blistanov A. A. Kristally kvantovoi i nelineinoi optiki [Crystals for quantum and nonlinear optics]. Moscow: MISiS, 2000, 760 p. (In Russ.)

10. Shishelova T. I., Sozinova T. V., Konovalov A. N. Workshop on spectroscopy. Water in minerals: tutorial. Moscow: Publishing house «Akademiya Estestvoznaniya», 2010, 210 p. (In Russ.)

11. Fillaux F. Proton transfer in the KHCO3 and benzoic acid crystals: A quantum view. J. Molecular Structure, 2007, vols. 844—845, pp. 308—318. DOI: 10.1016/j.molstruc.2007.05.046

12. Voronina T. V., Slobodov A. A. Spectroscopic and thermodynamic study of heavy water. J. Opt. Technol., 2011, vol. 78, no. 3, pp. 156—160. DOI: 10.1364/JOT.78.000156

13. Timokhin V. M. Garmash V. M., Tedzhetov V. A. Infrared spectroscopy and tunneling of protons in crystals with hydrogen bonds. Optics and Spectroscopy, 2017, vol. 122, no. 6, pp. 889—895. DOI: 10.1134/S0030400X17060224

14. Plyusnina I. I. Infrakrasnye spektry silikatov [Infrared spectra of silicates]. Moscow: MGU, 1967, 190 p. (In Russ.)

15. Bredikhin V. N., Dmitrienko L. A., Kiseleva N. V., Korolikhin V. V., Kotova M. A., Novikov M. A., Rubakha V. I. Experimental study of the nature of the infrared absorption of α-LiIO3 single crystals. Kristallografiya, 1982, vol. 27, no. 5, pp. 928—931. (In Russ.)

16. Egorov N. B., Shagalov V. V. Infrakrasnaya spektroskopiya redkikh i rasseyannykh elementov [Infrared spectroscopy of rare and scattered elements]. Tomsk: Izd-vo TPU, 2008, 20 p. (In Russ.)

17. Yaroslavtsev A. B. Proton conductivity of inorganic hydrates. Russ. Chem. Rev., 1994, vol. 63, no. 5, pp. 429—435. DOI: 10.1070/RC1994v063n05ABEH000095

18. Fedorova S. V. Physical and chemical and electric indicators of the micalex. Theoretical & Applied Science, 2015, vol. 24, no. 4, pp. 145—148. DOI: 10.15863/TAS.2015.04.24.25

19. Shishelova T. I., Kolodeznikova A. N., Shulga V. V. Assess the grade of mineral raw materials the method of IR spectroscopy. Fundamental Research, 2015, no. 2 (pt 15), pp. 3294—3298. URL: http://www.fundamental-research.ru/ru/article/view?id=37771 (In Russ.)

20. Papko L. F., Kravchuk A. P. Fiziko-khimicheskie metody issledovaniya neorganicheskikh veshchestv i materialov [Physico-chemical methods of research of inorganic substances and materials]. Minsk: Belarusian State Technological University, 2013, 95 p. URL: https://elib.belstu.by/handle/123456789/25560 (In Russ.)

21. Timokhin V. M., Garmash V. M., Tarasov V. P. NMR spectra and translational diffusion of protons in crystals with hydrogen bonds. Phys. Solid State, 2015, vol. 57, no. 7, pp. 1314—1317. DOI: 10.1134/S1063783415070331

22. Ivanov Yu. N., Sukhovsky A. A., Aleksandrova I. P., Totz J., Michel D. The mechanism of proton conductivity in the crystals of NH4 SO4. Fizika tverdogo tela, 2002, vol. 44, no. 6, pp. 1032—1038. (In Russ.)

23. Maeno N. Nauka o l’de [Science of ice]. Moscow: Mir, 1988, 230 p. (In Russ.)


Review

For citations:


Timokhin V.M., Garmash V.M., Tedzhetov V.A. Spectral diagnostics of vibrational centers in crystals with hydrogen bonds. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(1):35-44. (In Russ.) https://doi.org/10.17073/1609-3577-2019-1-35-44

Views: 913


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)