Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

https://doi.org/10.17073/1609-3577-2016-2-75-86

Abstract

Electrical and luminescent properties of near−UV light emitting diode structures (LEDs) prepared by hydride vapor phase epitaxy (HVPE) were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates) of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

About the Authors

A. Y. Polyakov
School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University; National University of Science and Technology MISiS
Russian Federation
Jeonju, Korea; 4 Leninsky Prospekt, Moscow 119049, Russia


Jin-Hyeon Yun
School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University
Korea, Republic of
Jeonju


A. S. Usikov
Nitride Crystals, Inc.; ITMO University (Saint Petersburg National Research University of Information Technologies, Mechanics and Optics)
Russian Federation
Deer Park, USA; 49 Kronverksky Prospekt, St. Petersburg, 197101 Russia


E. B. Yakimov
National University of Science and Technology MISiS; nstitute of Microelectronics Technology and High Purity Materials, Russian Academy of Science
Russian Federation
4 Leninsky Prospekt, Moscow 119049; 6 Academician Ossipyan Str., Chernogolovka, Moscow Region, 142432


N. B. Smirnov
National University of Science and Technology MISiS; Federal state research and design institute of rare metal industry (JSC «Giredmet»)
Russian Federation
4 Leninsky Prospekt, Moscow 119049; 5–1 B. Tolmachevsky Per., Moscow 119017


K. D. Shcherbachev
National University of Science and Technology MISiS,
Russian Federation
4 Leninsky Prospekt, Moscow 119049


H. Helava
Nitride Crystals, Inc.
United States
Deer Park


Y. N. Makarov
Nitride Crystals, Inc.
United States
Deer Park


S. Y. Kurin
Nitride Crystals Ltd.
Russian Federation
27 Engels Prospekt, St. Petersburg 194156


N. M. Shmidt
Ioffe Physical–Technical Institute of the Russian Academy of Sciences
Russian Federation
26 Politekhnicheskaya Str., St. Petersburg 194021


O. I. Rabinovich
National University of Science and Technology MISiS
Russian Federation
4 Leninsky Prospekt, Moscow 119049


S. I. Didenko
National University of Science and Technology MISiS
Russian Federation
4 Leninsky Prospekt, Moscow 119049


S. A. Tarelkin
National University of Science and Technology MISiS; Technological Institute for Superhard and Novel Carbon Materials
Russian Federation
4 Leninsky Prospekt, Moscow 119049; 7a Tsentralnaya Str., Troitsk, Moscow 142190


B. P. Papchenko
ITMO University (Saint Petersburg National Research University of Information Technologies, Mechanics and Optics)
Russian Federation
49 Kronverksky Prospekt, St. Petersburg, 197101


In-Hwan Lee
School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National Universit
Korea, Republic of
Jeonju


References

1. Razeghi, M. III-nitride optoelectronic devices: From ultraviolet toward terahertz / M. Razeghi // IEEE Photonics J. - 2011. - V. 3, iss. 2. - P. 263—267. DOI: 10.1109/JPHOT.2011.2135340

2. Schubert, E. F. Light-Emitting Diodes / E. F. Schubert. - Cambridge: Cambridge University Press, 2006.

3. Li, J. Growth of III-nitride photonic structures on large area silicon substrates / J. Li, J. Y. Lin, H. X. Jiang // Appl. Phys. Lett. - 2006. - V. 88, iss. 17. - P. 171909. DOI: 10.1063/1.2199492

4. Fujikawa, S. 284–300 nm quaternary InAlGaN-based deep- ultraviolet light-emitting diodes on Si(111) substrates/ S. Fujikawa, H. Hirayama // Appl. Phys. Express. - 2011. - V. 4, N 6. - P. 061002. DOI: 10.1143/APEX.4.061002

5. Zhang, Y. Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111) / Y. Zhang, S. Gautier, C. Y. Cho, E. Cicek, Z. Vashaei, R. McClintock, C. Bayram, Y. Bai, M. Razeghi // Appl. Phys. Lett. - 2013. - V. 102, iss. 1. - P. 011106. DOI: 10.1063/1.4773565

6. Cho, C.-Y. Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111) / C.-Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, M. Razeghi // Appl. Phys. Lett. - 2013. - V. 102, iss. 21. - P. 211110. DOI: 10.1063/1.4809521

7. Grandusky, J. R. High output power from 260 nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance / J. R. Grandusky, S. R. Gibb, M. C. Mendrick, C. Moe, M. Wraback, L. J. Schowalter // Appl. Phys. Express. - 2011. - V. 4, N 8. - P. 082101. DOI: 10.1143/APEX.4.082101

8. Pernot, C. Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes / C. Pernot, M. Kim, S. Fukahori, T. Inazu, T. Fujita, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, H. Amano // Appl. Phys. Express. - 2010. - V. 3, N 6. - P. 061004. DOI: 10.1143/APEX.3.061004

9. Kinoshita, T. Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy / T. Kinoshita, K. Hironaka, T. Obata, T. Nagashima, R. Dalmau, R. Schlesser, B. Moody, J. Xie, S.-I. Inoue, Y. Kumagai, A. Koukitu, Z. Sitar // Appl. Phys. Express. - 2012. - V. 5, N 12. - P. 122101. DOI: 10.1143/APEX.5.122101

10. Shen, Y. C. Auger recombination in InGaN measured by photoluminescence / Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, M. R. Krames // Appl. Phys. Lett. - 2007. - V. 91, iss. 14. - P. 141101. DOI: 10.1063/1.2785135

11. Kioupakis, E. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes / E. Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle // Appl. Phys. Lett. - 2011. - V. 98, iss. 16. - P. 161107. DOI: 10.1063/1.3570656

12. Ryu, H.-Y. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes / H.-Y. Ryu, I.-G. Choi, H.-S. Choi, J.-I. Shim // Appl. Phys. Express. - 2013. - V. 6, N 6. - P. 062101. DOI: 10.7567/APEX.6.062101

13. Ryu, H.-Y. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures / H.-Y. Ryu // Nanoscale Research Lett. - 2014. - V. 9. - P. 58. DOI: 10.1186/1556-276X-9-58

14. Zhao, P. Analysis of TM mode light extraction efficiency enhancement for deep ultraviolet AlGaN quantum wells light-emitting diodes with III-nitride micro-domes / P. Zhao, L. Han, M. R. McGoogan, H. Zhao // Optical Materials Express. - 2012. - V. 2, iss. 10. - P. 1397—1406. DOI: 10.1364/OME.2.001397

15. Kurin, S. CHVPE growth of AlGaN-based UV LEDs / S. Kurin, A. Antipov, I. Barash, A. Roenkov, H. Helava, S. Tarasov, E. Menkovich, I. Lamkin, Yu. Makarov // Phys. Status Solidi C. - 2013. - V. 10, iss. 3. - P. 289—293. DOI: 10.1002/pssc.201200640

16. Pautrat, J. L. Admittance spectroscopy: A powerful characterization technique for semiconductor crystals—Application to ZnTe / J. L. Pautrat, B. Katircioglu, N. Magnea, D. Bensahel, J. C. Pfister, L. Revoil // Solid-State Electron. - 1980. - V. 23, iss. 11. - P. 1159— 1169. DOI: 10.1016/0038-1101(80)90028-3

17. Martin, G. M. Detailed electrical characterisation of the deep Cr acceptor in GaAs / G. M. Martin, A. Mitonneau, D. Pons, A. Mircea, D. W. Woodward // J. Phys. C: Solid State Phys. - 1980. - V. 13, N 20. - P. 3855. DOI: 10.1088/0022-3719/13/20/009

18. Yakimov, E. B. EBIC measurements of small diffusion length in semiconductor structures / E. B. Yakimov, S. S. Borisov, S. I. Zaitsev // Semiconductors. - 2007. - V. 41, iss. 4. - P. 411—413. DOI: 10.1134/S1063782607040094

19. Yakimov, E. B. What is the real value of diffusion length in GaN? / E. B. Yakimov // J. Alloys and Compounds. - 2015. - V. 627. - P. 344—351. DOI: 10.1016/j.jallcom.2014.11.229

20. Moram, M. A. X-ray diffraction of III-nitrides / M. A. Moram, M. E. Vickers // Rep. Prog. Phys. - 2009. - V. 72, N 3. - P. 036502. DOI: 10.1088/0034-4885/72/3/036502

21. Tao, Y. B. Polarization modification in InGaN/GaN multiple quantum wells by symmetrical thin low temperature-GaN layers / B. Tao, Z. Z. Chen, F. F. Zhang, C. Y. Jia, S. L. Qi, T. J. Yu, X. N. Kang, J. Yang, L. P. You, D. P. Yu, G. Y. Zhang // J. Appl. Phys. - 2010. - V. 107, iss. 10. - P. 103529. DOI: 10.1063/1.3374686

22. Kinoshita, T. High p-type conduction in high-Al content Mg-doped AlGaN / T. Kinoshita, T. Obata, H. Yanagi, S.-I. Inoue // Appl. Phys. Lett. - 2013. - V. 102, iss. 1. - P. 012105. DOI: 10.1063/1.4773594

23. Mori, T. Crystal growth and p-type conductivity control of AlGaN for high-efficiency nitride-based UV emitters / T. Mori, K. Nagamatsu, K. Nonaka, K. Takeda, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki // Phys. Status Solidi C - 2009. - V. 6, iss. 12. - P. 2621—2625. DOI: 10.1002/pssc.200982547

24. Van de Walle, C. G. First-principles calculations for defects and impurities: Applications to III-nitrides / C. G. Van de Walle, J. Neugebauer // J. Appl. Phys. - 2004. - V. 95, iss. 8. - P. 3851. DOI: 10.1063/1.1682673

25. GaN and Related Materials II, S. J. Pearton (Eds.) / G. Popovici, H. Morkoc. - Gordon and Breach (Netherlands), 1999. P. 93—172

26. Simpkins, B. S. Correlated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride / B. S. Simpkins, E. T. Yu, P. Waltereit, J. S. Speck // J. Appl. Phys. - 2003. - V. 94, iss. 3. - P. 1448. DOI: 10.1063/1.1586952

27. Wei, T. B. Hillocks and hexagonal pits in a thick film grown by HVPE / T. B. Wei, R. F. Duan, J. X. Wang, J. M. Li, Z. Q. Huo, Y. P. Zeng // Microelectronics J. - 2008. - V. 39, iss. 12. - P. 1556—1559. DOI: 10.1016/j.mejo.2008.02.024

28. Kim, B. H. Investigation of leakage current paths in n- GaN by conductive atomic force microscopy / B. H. Kim, D. Y. Moon, K. S. Joo, S. W. Oh, Y. K. Lee, Y. J. Park, Y. Nanishi, E. J. Yoon // Appl. Phys. Lett. - 2014. - V. 104, iss. 10. - P. 102101. DOI: 10.1063/1.4868127

29. Look, D. C. Dislocation scattering in GaN / D. C. Look, J. R. Sizelove // Phys. Rev. Lett. - 1999. - V. 82, iss. 6. - P. 1237—1240. DOI: 10.1103/PhysRevLett.82.1237

30. Usui, A. Gallium nitride crystals grown by hydride vapor phase epitaxy with dislocation reduction mechanism / A. Usui // ECS J. Solid State Sci. Technol. - 2013. - V. 2, iss. 8. - P. N3045—N3050. DOI: 10.1149/2.010308jss

31. Elsner, J. Theory of threading edge and screw dislocations in GaN / J. Elsner, R. Jones, P. K. Sitch, V. D. Porezag, M. Elstner, Th. Frauenheim, M. I. Heggie, S. Öberg, P. R. Briddon // Phys. Rev. Lett. - 1997. - V. 79, iss. 19. - P. 3672. DOI: 10.1103/PhysRevLett.79.3672

32. Elsner, J. Deep acceptors trapped at threading-edge dislocations in GaN / J. Elsner, R. Jones, M. I. Heggie, P. K. Sitch, M. Haugk, Th. Frauenheim, S. Öberg, P. R. Briddon // Phys. Rev. B. - 1998. - V. 58, iss. 19. - P. 12571. DOI: 10.1103/PhysRevB.58.12571

33. Northrup, J. E. Screw dislocations in GaN: The Ga-filled core model / J. E. Northrup // Appl. Phys. Lett. - 2001. - V. 78, iss. 16. - P. 2288—2290. DOI: 10.1063/1.1361274

34. Song, J. High conductive gate leakage current channels induced by in segregation around screw- and mixed-type threading dislocations in lattice-matched InxAl1-xN/GaN heterostructures / J. Song, F. J. Xu, X. D. Yan, F. Lin, C. C. Huang, L. P. You, T. J. Yu, X. Q. Wang, B. Shen, K. Wei, X. Y. Liu // Appl. Phys. Lett. - 2010. - V. 97, iss. 23. - P. 232106. DOI: 10.1063/1.3525713

35. Meneghini, M. Characterization of the deep levels responsible for non-radiative recombination in InGaN/GaN light-emitting diodes / M. Meneghini, M. la Grassa, S. Vaccari, B. Galler, R. Zeisel, P. Drechsel, B. Hahn, G. Meneghesso, E. Zanoni // Appl. Phys. Lett. - 2014. - V. 104, iss. 11. - P. 113505. DOI: 10.1063/1.4868719

36. Venturi, G. Dislocation-related trap levels in nitride- based light emitting diodes / G. Venturi, A. Castaldini, A. Cavallini, M. Meneghini, E. Zanoni, D. Zhu, C. Humphreys // Appl. Phys. Lett. - 2014. - V. 104, iss. 21. - P. 211102. DOI: 10.1063/1.4879644

37. Meneghini, M. Investigation of the deep level involved in InGaN laser degradation by deep level transient spectroscopy / M. Meneghini, C. de Santi, N. Trivellin, K. Orita, S. Takigawa, T. Tanaka, D. Ueda, G. Meneghesso, E. Zanoni // Appl. Phys. Lett. - 2011. - V. 99, iss. 9. - P. 093506. DOI: 10.1063/1.3626280

38. Look, D. C. Defect donor and acceptor in GaN / D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, R. J. Molnar // Phys. Rev. Lett. - 1997. - V. 79, iss. 12. - P. 2273. DOI: 10.1103/PhysRevLett.79.2273

39. Reschikov, M. A. Luminescence properties of defects in GaN / M. A. Reschikov, H. Morkoç // J. Appl. Phys. - 2005. - V. 97, iss. 6. - P. 061301. DOI: 10.1063/1.1868059

40. Menkovich, E. A. Study of the characteristics of UVA LEDs grown by HVPE: active region thickness-dependent performance / E. A. Menkovich, S. A. Tarasov, I. A. Lamkin, A. V. Solomonov, S. Yu. Kurin, A. A. Antipov, I. S. Barash, A. D. Roenkov, A. S. Usikov, H. I. Helava, Yu. N. Makarov // J. Phys.: Conf. Ser. - 2014. - V. 541, conf. 1. - P. 012054. DOI: 10.1088/1742-6596/541/1/012054

41. UV-LED. URL: http://www.nichia.co.jp/en/product/uv-led.html


Review

For citations:


Polyakov A.Y., Yun J., Usikov A.S., Yakimov E.B., Smirnov N.B., Shcherbachev K.D., Helava H., Makarov Y.N., Kurin S.Y., Shmidt N.M., Rabinovich O.I., Didenko S.I., Tarelkin S.A., Papchenko B.P., Lee I. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(2):75-86. (In Russ.) https://doi.org/10.17073/1609-3577-2016-2-75-86

Views: 698


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)