Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Deformation anisotropy of Y + 128° –cut single crystalline bidomain wafers of lithium niobate

https://doi.org/10.17073/1609-3577-2016-2-95-102

Abstract

Bidomain single crystals of lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) are promising material for usage as actuators, mechanoelectrical transducers and sensors working in a wide temperature range. It is necessary to take into account anisotropy of properties of crystalline material when such devices are designed. Inthis study we investigated deformations of bidomain round shaped Y + 128°-cut wafers of lithium niobate in an external electric field. Dependencies of piezoelectric coefficients on rotation angles were calculated for lithium niobate and lithium tantalate and plotted for the crystal cuts which are used for bidomain ferroelectric structure formation. In experiment, we utilized external heating method and long-time annealing with lithium out-diffusion method in order to create round bidomain lithium niobate wafers. In order to obtain dependencies of the bidomain crystals’ movements on the rotation angle with central fastening and external electric field application optical microscopy was used. We also modeled a shape of the deformed bidomain wafer with a suggestion that the edge movement depends on the radial distance to the fastening point quadratically. In conclusion, bidomain Y + 128°-cut lithium niobate wafer exhibits saddle-like deformation when DC electric field is applied.

About the Authors

I. V. Kubasov
National University of Science and Technology MISiS
Russian Federation

Ilya V. Kubasov — Engineer, Postgraduate Student

4 Leninsky Prospekt, Moscow 119049



A. V. Popov
National University of Science and Technology MISiS; JSC «Optron»
Russian Federation

Ayaal V. Popov— engineer, master’s degree student

4 Leninsky Prospekt, Moscow 119049; 53 Sherbakovskaya Str., Moscow 105187



A. S. Bykov
National University of Science and Technology MISiS
Russian Federation

Alexander S. Bykov — Cand. Sci. (Eng.), Assistant Professor

4 Leninsky Prospekt, Moscow 119049



A. A. Temirov
National University of Science and Technology MISiS
Russian Federation

Aleksandr A. Temirov — Engineer, PhD student

4 Leninsky Prospekt, Moscow 119049



A. M. Kislyuk
National University of Science and Technology MISiS
Russian Federation

Aleksandr M. Kislyuk — engineer, PhD student

4 Leninsky Prospekt, Moscow 119049



R. N. Zhukov
National University of Science and Technology MISiS
Russian Federation

Roman N. Zhukov — Engineer

4 Leninsky Prospekt, Moscow 119049



D. A. Kiselev
National University of Science and Technology MISiS
Russian Federation

Dmitry A. Kiselev— Cand. Sci. (Phys.−Math.), Senior Researcher

4 Leninsky Prospekt, Moscow 119049



M. V. Chichkov
National University of Science and Technology MISiS
Russian Federation

Maksim V. Chichkov — Engineer, PhD student

4 Leninsky Prospekt, Moscow 119049



M. D. Malinkovich
National University of Science and Technology MISiS
Russian Federation

Mikhail D. Malinkovich — Cand. Sci. (Phys.−Math.), Assistant Professor 

4 Leninsky Prospekt, Moscow 119049



Yu. N. Parkhomenko
National University of Science and Technology MISiS
Russian Federation

Yurii N. Parkhomenko — Dr. Sci. (Phys.−Math.), Professor 

4 Leninsky Prospekt, Moscow 119049



References

1. Volk T. R., Wöhlecke M. Lithium niobate: defects, photorefraction and ferroelectric switching. In: Springer Series in Materials Science. V. 115. Berlin; Heidelberg: Springer, 2009. 260 p. DOI: 10.1007/978-3-540-70766-0

2. Arizmendi L. Photonic applications of lithium niobate crystals. Phys. Status Solidi (a), 2004, vol. 201, no. 2, pp. 253—283. DOI: 10.1002/pssa.200303911

3. Wooten E. L., Kissa K. M., Yi-Yan A., Murphy E. J., Lafaw D. A., Hallemeier P. F., Maack D., Attanasio D. V., Fritz D. J., McBrien G. J., Bossi D. E. A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of selected topics in Quantum Electronics, 2000. vol. 6, no. 1, pp. 69—82. DOI: 10.1109/2944.826874

4. Gualtieri J. G., Kosinski J. A., Ballato A. Piezoelectric materials for acoustic wave applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1994, vol. 41, no. 1, pp. 53—59. DOI: 10.1109/58.265820

5. Scott J. F. Ferroelectric memories In: Springer Series in Advanced Microelectronics. V. 3. Berlin; Heidelberg: Springer, 2000. 248 p. DOI: 10.1007/978-3-662-04307-3

6. Cross L. E. Ferroelectric materials for electromechanical transducer applications. Materials Chemistry and Physics, 1996, vol. 43, no. 2, pp. 108—115. DOI: 10.1016/0254-0584(95)01617-4

7. Lu Y. L., Lu Y. Q., Cheng X. F., Luo G. P., Xue C. C., Ming N. B. Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice. Appl. Phys. Lett., 1996, vol. 68, no. 19, pp. 2642—2644. DOI: 10.1063/1.116267

8. Antipov V. V., Bykov A. S., Malinkovich M. D., Parkhomenko Yu. N. Formation of bidomain structure in lithium niobate single crystals by electrothermal method. Ferroelectrics, 2008, vol. 374, no. 1, pp. 65—72. DOI: 10.1080/00150190802427127

9. Grilli S., Ferraro P., de Nicola S., Finizio A., Pierattini G., de Natale P., Chiarini M. Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography. Optics Express, 2003, vol. 11, no. 4, pp. 392—405. DOI: 10.1364/OE.11.000392

10. Dierolf V., Sandmann C. Direct-write method for domain inversion patterns in LiNbO3. Appl. Phys. Lett., 2004, vol. 84, no. 20, pp. 3987—3989. DOI: 10.1063/1.1753057

11. Zhang X., Dongfeng X., Kenji K. Domain switching and surface fabrication of lithium niobate single crystals. J. Alloys and Compounds, 2008, vol. 499, no. 1–2, pp. 219—223. DOI: 10.1016/j.jallcom.2006.02.091

12. Nutt A. C., Gopalan V., Gupta M. C. Domain inversion in LiNbO3 using direct electron — beam writing. Appl. Phys. Lett., 1992, vol. 60, no. 23, pp. 2828—2830. DOI: 10.1063/1.106837

13. Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide. J. Appl. Phys., 1979, vol. 50, no. 7, pp. 4599—4603. DOI: 10.1063/1.326568

14. Rosenman G., Kugel V. D., Shur D. Diffusion-induced domain inversion in ferroelectrics. Ferroelectrics, 1995, vol. 172, no. 1, pp. 7—18. DOI: 10.1080/00150199508018452

15. Chen J., Zhou Q., Hong J. F., Wang W. S., Ming N. B., Feng D., Fang C. G. Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3. J. Appl. Phys., 1989, vol. 66, no. 1, pp. 336—341. DOI: 10.1063/1.343879

16. Malinkovich M. D., Bykov A. S., Kubasov I. V., Kiselev D. A., Ksenich S. V., Zhukov R. N., Temirov A. A., Timushkin N. G., Parkhomenko Yu. N. Formation of a bidomain structure in lithium niobate wafers for beta-voltaic alternators. Russian Microelectronics, 2016, vol. 45, no. 8, pp. 582—586. DOI: 10.1134/S1063739716080096

17. Kugel V. D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals. Appl. Phys. Lett., 1993, vol. 62, no. 23, pp. 2902—2904. DOI: 10.1063/1.109191

18. Kubasov I. V., Kislyuk A. M., Bykov A. S., Malinkovich M. D., Zhukov R. N., Kiselev D. A., Ksenich S. V., Temirov A. A., Timushkin N. G., Parkhomenko Yu. N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing. Crystallography Reports, 2016, vol. 61, no. 2, pp. 258—262. DOI: 10.7868/S0023476116020120

19. Bykov A. S., Grigoryan S. G., Zhukov R. N., Kiselev D. A., Ksenich S. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Yu. N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method. Russian Microelectronics, 2014, vol. 43, no. 8, pp. 536—542. DOI: 10.1134/S1063739714080034

20. Kubasov I., Malinkovich M., Bykov A., Kiselev D., Temirov A., Ksenich S. Bimorph single crystalline piezoelectric actuators for scanning probe microscopy. 24th Internat. Conf. on Materials and Technology. Portorož (Slovenia), 2016, p. 124.

21. Blagov A. E., Bykov A. S., Kubasov I. V., Malinkovich M. D., Pisarevskii Yu. V., Targonskii A. V., Eliovich I. A., Kovalchuk M. V. An electromechanical X-ray optical element based on a hysteresis-free monolithic bimorph crystal. Instruments and Experimental Techniques, 2016, vol. 59, no. 5, pp. 728—732. DOI: 10.1134/ S0020441216050043

22. Kubasov I., Kislyuk A., Malinkovich M., Kiselev D., Chichkov M., Ksenich S., Temirov A., Bykov A., Parkhomenko Yu. A novel high-temperature vibration sensor based on bidomain lithium niobate crystal. 7thInternational Advances in Applied Physics and Materials Science Congress & Exhibition. Oludeniz (Turkey), 2017, p. 147.

23. Vidal J., Turutin A. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Yu. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, vol. PP, no. 99, p. 1-1. DOI: 10.1109/TUFFC.2017.2694342

24. Kubasov I. V., Timshina M. S., Kiselev D. A., Malinkovich M. D., Bykov A. S., Parkhomenko Yu. N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing. Crystallography Reports, 2015, vol. 60, no. 5, pp. 700—705. DOI: 10.1134/S1063774515040136

25. Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer. Jpn. J. Appl. Phys., 1987, vol. 26, no. S2, pp. 198—200. DOI: 10.7567/JJAPS.26S2.198

26. Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer. Ferroelectrics, 1989, vol. 93, no. 1, pp. 211—216. DOI: 10.1080/00150198908017348

27. Crawley E. F., Lazarus K. B. Induced strain actuation of isotropic and anisotropic plates. AIAA Journal, 1991, vol. 29, no. 6, pp. 944—951. DOI: 10.2514/3.10684

28. Bent A. A., Hagood N. W., Rodgers J. P. Anisotropic actuation with piezoelectric fiber composites. J. Intell. Mater. Syst. and Struct., 1995, vol. 6, no. 3, pp. 338—349. DOI: 10.1177/1045389X9500600305

29. Huang G. L., Sun C. T. The dynamic behaviour of a piezoelectric actuator bonded to an anisotropic elastic medium. Internat. J. Solids and Structures, 2006, vol. 43, no. 5, pp. 1291—1307. DOI: 10.1016/j.ijsolstr.2005.03.010

30. Warner A. W., Onoe M., Coquin G. A. Determination of elastic and piezoelectric constants for crystals in class (3m). The Journal of the Acoustical Society of America, 1967, vol. 42, no. 6, pp. 1223—1231. DOI: 10.1121/1.1910709

31. Shur V. Y., Baturin I. S., Mingaliev E. A., Zorikhin D. V., Udalov A. R., Greshnyakov E. D. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers. Appl. Phys. Lett., 2015, vol. 106, no. 5, pp. 053116. DOI: 10.1063/1.4907679

32. Smits J. G., Dalke S. I., Cooney T. K. The constituent equations of piezoelectric bimorphs. Sensors and Actuators A: Physical, 1991, vol. 28, no. 1, pp. 41—61. DOI: 10.1016/0924-4247(91)80007-C

33. Nassau K., Levinstein H. J., Loiacono G. M. The domain structure and etching of ferroelectric lithium niobate. Appl. Phys. Lett., 1965, vol. 6, no. 11, pp. 228—229. DOI: 10.1063/1.1754147


Review

For citations:


Kubasov I.V., Popov A.V., Bykov A.S., Temirov A.A., Kislyuk A.M., Zhukov R.N., Kiselev D.A., Chichkov M.V., Malinkovich M.D., Parkhomenko Yu.N. Deformation anisotropy of Y + 128° –cut single crystalline bidomain wafers of lithium niobate. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(2):95-102. (In Russ.) https://doi.org/10.17073/1609-3577-2016-2-95-102

Views: 890


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)