The wave equation: from eikonal to anti-eikonal approximation
https://doi.org/10.17073/1609-3577-2016-2-103-107
Abstract
When the refractive index changes very slowly compared to the wave-length we may use the eikonal approximation to the wave equation. In the opposite case, when the refractive index highly variates over the distance of one wave-length, we have what can be termed as the anti-eikonal limit. This situation is addressed in this work. The anti- eikonal limit seems to be a relevant tool in the modelling and design of new optical media. Besides, it describes a basic universal behaviour, independent of the actual values of the refractive index and, thus, of the media, for the components of a wave with wave-length much greater than the characteristic scale of the refractive index.
About the Authors
L. VázquezSpain
Luis Vázquez — Dept. Matemática Aplicada, Facultad de Informática
Madrid
S. Jiménez
Spain
Salvador Jiménez — Dept. Matemática Aplicada a las TIC, ETSI Telecomunicación
30 Complutense Ave., 28040, Madrid
A. B. Shvartsburg
Russian Federation
Alexander B. Shvartsburg
13/2 Izhorskaya Str., Moscow 125412
References
1. Kennedy S. R., Brett M. J. Porous broadband antireflection coating by glancing angle deposition. Applied Optics. 2003, vol. 42, no. 22, pp. 4573—4579. DOI: 10.1364/AO.42.004573
2. O’Brien S., Pendry J. P. Magnetic activity at infrared frequencies in structured metallic photonic crystals. J. Physics: Condensed Matter, 2002, vol. 14, no. 25, pp. 6383—6394. DOI: 10.1088/09538984/14/25/307
3. Alù A., Salandrino A., Engheta N. Negative effective permeability and left-handed materials at optical frequencies. Optics Express, 2006, vol. 14, no. 4, pp. 1557—1567. DOI: 10.1364/OE.14.001557
4. Zhao Q., Zhou J., Zhang J., Lippens F. Mie resonance-based dielectric metamaterials. Materials Today, 2009, vol. 12, no. 12, pp. 60—69. DOI: 10.1016/S1369-7021(09)70318-9
5. Borisov A. G., García de Abajo F. J., Shabanov S. V. Role of electromagnetic trapped modes in extraordinary transmission in nananostructured materials. Phys. Rev. B., 2005, vol. 71, pp. 075408. DOI: 10.1103/PhysRevB.71.075408
6. García de Abajo F. J., Gómez-Santos G., Blanco L. A., Bori11. Shvartsburg A. B., Maradudin A. A. Waves in gradient sov A. G., Shabanov S. V. Tunneling Mechanism of light transmission metamaterials. Hackensack (NJ) ; London : World Scientific Pub. through metallic films. Phys. Rev. Lett., 2005, vol. 95, pp. 067403.
7. Gilles L., Moloney J. V., Vázquez L. Electromagnetic shocks on the optical cycle of ultrashort pulses in triple-resonance Lorentz dielectric media with subfemtosecond nonlinear electronic Debye relaxation. Phys. Rev. E., 1999, vol. 60, no. 1, pp. 1051—1059. DOI: 10.1103/PhysRevE.60.1051
8. Porras M. A., Salazar-Bloise F., Vázquez L. Creation of local localized optical waves that do not obey the radiation condition at infinity. Phys. Rev. Lett., 2000, vol. 85, no. 10, pp. 2104—2107. DOI: 10.1103/PhysRevLett.85.2104
9. Porras M. A., Salazar-Bloise F., Vázquez L. Focusing properties of shocking optical pulses. Optics Lett., 2001, vol. 26, no. 6, pp. 376—378. DOI: 10.1364/OL.26.000376
10. In the period 2004—2012 and through the «Access to Research Infrastructures» the European Laboratory for Nonlinear Spectroscopy (LENS), in Firenze, provided the experimental support to detect the generation and properties of electromagnetic shock waves that we studied numerically. The projects were LENS000242 (2004): http://www.laserlabeurope.eu/transnational-access/accessfacilities/access-projects-lens, and LENS001677 (2012): https://laserlab.mbi-berlin.de/access/publish/listAccessProjects.jsf
11. Shvartsburg A. B., Maradudin A. A. Waves in gradient metamaterials. Hackensack (NJ) ; London : World Scientific Pub. Co., 2013. 328 p.
12. Kravtsov Yu. A. Geometric optics in engineering physics. Harrow (UK): Alpha Science International, 2005.
13. Born M., Wolf E. Principles of optics. Cambridge (UK): Cambridge University Press, 1998.
14. Bender C. M., Orzag S. A. Advanced mathematical methods for scientists and engineers. New York: Springer−Verlag, 1999.
15. Konotop V. V., Fei Zhang, Vázquez L. Wave interaction with a fractal layer. Phys. Rev. E., 1993, vol. 48, no. 5, pp. 4044—4048. DOI: 10.1103/PhysRevE.48.4044
16. Rañada A. F., Vázquez L. Quantum mechanics of non linear classical fields. Anales de Física, 1980, vol. 76, pp. 139—141. DOI: 10.1007/BF01807613
Review
For citations:
Vázquez L., Jiménez S., Shvartsburg A.B. The wave equation: from eikonal to anti-eikonal approximation. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(2):103-107. (In Russ.) https://doi.org/10.17073/1609-3577-2016-2-103-107