Optimization problems of nanoscale semiconductor heterostructures
https://doi.org/10.17073/1609-3577-2016-2-108-114
Abstract
In the paper a new approach to solve the optimization problem of nanoscale semiconductor heterostructures is presented. In this paper the authors formulated and solved The problem of the barrier layer optimal doping is formulated for the case of multilayer barrier. The problem is solved using the effective optimization algorithms based on gradient methods. As an example, is considered heterostructure Al0.25GaN/GaN with the total thickness of the barrier layer 30 nm. Obtained in the computational experiment results are consistent with the modern trend to move from homogeneous doping profile to a planar-doping in the technology of manufacturing fieldeffect transistors. The developed tools of mathematical modeling and optimization can be used in the engineering of field effect transistors. The proposed approach creates the conditions for computer-aided design of such structures.
Keywords
About the Author
K. K. AbgaryanRussian Federation
Karine K. Abgaryan1 — Cand. Sci. (Phys.-Math.), Head of the Department
40 Vavilov Str., Moscow 119333
References
1. Lukashin V. M., Pashkovskij A. B., Zhuravlev K. S., Toropov A. I., Lapin V. G., Golant E. I., Kapralova A. A.. Prospects for the development of powerful field transistors on heterostructures with donor-acceptor doping. Fizika i tekhnika poluprovodnikov = Semiconductors, 2014, vol. 48, no. 5, pp. 684—692.
2. Abgaryan K. K., Mutigullin I. V., Reviznikov D. L. Computational model of 2DEG mobility in the AlGaN/GaN heterostructures. Physica Status Solidi (c), 2015, vol. 12, no. 4-5, pp. 460—465. DOI: 10.1002/pssc.201400200
3. Abgaryan K. K., Reviznikov D. L. Numerical modeling of the distribution of charge carriers in nanoscale semiconductor heterostructures taking into account polarization effects. Zhurnal
4. Kohn W., J. Sham L. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, vol. 140, pp. A1133— A1138. DOI: 10.1103/PhysRev.140.A1133
5. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B., 1996, vol. 54, no. 16, pp. 11169—11186. DOI: 10.1103/ PhysRevB.54.11169
6. Vasileska D., Goodnick S. M., Goodnick S. Computational electronics: semiclassical and quantum device modeling and simulation. CRC Press, 2010. 782 p.
7. Protasov D. Y., Malin T. V., Tikhonov A. V., Zhuravlev K. S., Tsatsulnikov A. F., Electron scattering in AlGaN/GaN heterostructures with a two-dimensional electron gas. Fizika i tekhnika poluprovodnikov = Semiconductors, 2013, vol. 47, no. 1, pp. 33—44.
8. Ambacher O., Majewski J., Miskys C., Link A., Hermann M., Eickhoff M., Stutzmann M., Bernardini F., Fiorentini V., Tilak V., Schaff B., Eastman L. F. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys.: Condens. Matter., 2002, vol. 14, pp. 3399—3434.
9. Abgaryan K. K., Mutigullin I. V., Reviznikov D. L. Theoretical investigation of 2DEG concentration and mobility in the AlGaN/GaN heterostructures with various Al concentrations. Physica status solidi (c), 2015, vol. 12, no. 12, pp. 1376—1382. DOI: 10.1002/pssc.201510159
10. Trellakis A., Galick A. T., Pacelli A., Ravaioli U. Iteration scheme for solution of the two-dimensional Schrodinger-Poisson equations in quantum structures. J. Appl. Phys., 1997, vol. 81, no. 12. DOI: 10.1063/1.365396
11. Evtushenko Yu. G. Optimizatsiya i bystroe differentsirovanie [Optimization and fast differentiation]. Moscow: Dorodnicyn Computing Centre of RAS, 2013. 144 p. (In Russ.)
12. Borisenko V. E., Vorob’eva A. I., Utkina E.A.. Nanoelektronika [Nanoelectronics]. Moscow: Binom. Laboratoriya znanii, 2009. 223 p. (In Russ.)
Review
For citations:
Abgaryan K.K. Optimization problems of nanoscale semiconductor heterostructures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(2):108-114. (In Russ.) https://doi.org/10.17073/1609-3577-2016-2-108-114