Is not it time to go back to Tg Tamman?
https://doi.org/10.17073/1609-3577-2016-2-133-143
Abstract
Based on the analysis of numerous experimental data shows that the generally accepted today, the glass transition temperature Tg is not. It was the result of borrowing from tammana symbol Tg, is meant the temperature of viscous flow liquid transformation into solid brittle glassy state, and use it together symbol Tw, means the temperature tammana bend on the dependence of the «property-temperature» glass-forming substances above Tg of tammana. On the basis of the application of polymer-polymorphing representations of the structure of glass-forming substances are disclosed physico-chemical nature of the temperature curve Tw (conventional Segodnya), which is the temperature of the reverse direction interconversion of nanofragments patterns (polymorphical) high and low temperature polymorphs that coexist in the vitreous substance. The discovery in recent decades prezentatsionnogo effect located as tammana Tg, is below the standard Tg, Tg confirms the truth of tammana characterized by increasedspecific heat of the heated glass.
About the Authors
V. S. MinaevRussian Federation
Victor S. Minaev — Dr. Sci. (Chem.), Professor, Chief Researcher
proezd 4806, build. 4/2, Zelenograd, Moscow 124460; Bld. 1, Shokin Sq., Zelenograd, Moscow 124498
N. M. Parfenov
Russian Federation
Nikolai M. Parfenov — Cand. Sci. (Eng.), Associate Professor, Senior Researcher
4 Volokolamsk highway, Moscow 125993,
S. P. Timoshenkov
Russian Federation
Sergey P. Timoshenkov — Dr. Sci. (Eng.), Professor, Head of Department
Bld. 1, Shokin Sq., Zelenograd, Moscow 124498
V. P. Vassiliev
Russian Federation
Valerii P. Vassiliev — Dr. Sci. (Chem.), Leading Researcher
Leninskie Gory, Moscow 119991
V. V. Kalugin
Russian Federation
Victor V. Kalugin — Dr. Sci. (Eng.), Professor
Bld. 1, Shokin Sq., Zelenograd, Moscow 124498
D. Zh. Mukimov
Russian Federation
Damir Zh. Mukimov — Engineer
Bld. 1, Shokin Sq., Zelenograd, Moscow 124498
References
1. Rao K. J. Structural Chemistry of Glasses. North Holland: Elsevier, 2002. 584 р. DOI: 10.1016/B978-0-08-043958-7.50034-0
2. Tamman G., Hesse W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten [Dynamic crossover in polymers. Role of molecular weight]. Z. Anorg. Allg. Chem., 1926, bd. 156, s. 245—257. (In Ger.). DOI: 10.1002/zaac.19261560121
3. Tamman G. Stekloobraznoe sostoyanie [Glassy state]. Leningrad; Moscow: ONTI. Glavnaya redaktsiya obshchekhimicheskoi literatury, 1935. 136 p. (In Russ.)
4. Mazurin O. V. Steklovanie [Fiberglass]. Leningrad: Nauka, 1986. 158 p. (In Russ.)
5. Artamonova M. V. Stekloobraznoe sostoyanie [Glassy state]. In: Khimicheskaya tekhnologiya stekla i sitallov [Chemical technology of glass and glassware]. Moscow: Stroiizdat, 1983. Pp. 9—16. (In Russ.)
6. Landa L., Landa K., Thomsen S. Uncommon description of common glasses. V. 1: Fundamentals of the united theory of glasses formation and glass transition. St. Peterburg: Yanus Publishing House, 2004. 136 p.
7. Lindig O. In: Beiträge Zur Angewandten Glasforschung. Hrsg. E. Schott. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1959. 361 s. (S. 209—220). (In Ger.)
8. Winter-Klein A. Evolution de la viscosite du verre en fonction de la temperature. Verres et refractaires, 1953, vol. 7, no. 4, pp. 217—227. (In Fr.)
9. Winter-Klein A. Struktura i fizicheskie svoistva stekla [Structure and physical properties of glass]. In: Stekloobraznoe sostoyanie. Trudy 4-go Vsesoyuznogo soveshchaniya [Glassy state. Proceedings of the 4th All-Union Conference]. Moscow; Leningrad: Nauka, 1965. Pp. 45—54. (In Russ.)
10. Shelby J. E. Introduction to glass science and technology. Cambrige (UK): Royal Society of Chemistry, 1997. 244 p.
11. Jones G. O. Glass. London: Methuen Publishing, 1956. 119 p.
12. Kobeko P. P. Amorfnye veshchestva [Amorphous substances]. Moscow; Leningrad: Izd-vo Akademii Nauk, 1952, 432 p. (In Russ.)
13. Kobeko P. P. Amorfnoe sostoyanie [Amorphous state]. Leningrad; Moscow: Tekhniko-ekonomicheskoe izd-vo, 1933. 88 p. (In Russ.)
14. Mazurin O. V., Minko N. I. Osobennosti stekloobraznogo sostoyaniya i stroeniya oksidnykh stekol [Features of the glassy state and structure of oxide glasses]. Moscow: MISI, BTISM, 1983. 123 p. (In Russ.)
15. Nemilov S. V. Vyazkost’ stekol i ikh rasplavov [Viscosity of glasses and their melts]. In: Fiziko-khimicheskie osnovy proizvodstva opticheskogo stekla [Physico-chemical basis for the production of optical glass]. Leningrad: Khimiya, 1976, pp. 235—250. (In Russ.)
16. Rawson H. Inorganic glass-forming systems. London; New York: Academic Press, 1967. 312 р.
17. Feltz A. Amorphe and glasartige anorganische Festkörper. Berlin: Akademie-Verlag, 1983. 460 s. (In Ger.)
18. Appen A. A. Khimiya stekla [Chemistry of Glass]. Leningrad: Khimiya, 1974. 352 p. (In Russ.)
19. Nemilov S. V. Vyazkost’ i struktura stekla [Viscosity and structure of glass]. In: Stekloobraznoe sostoyanie. Trudy 4-go Vsesoyuznogo soveshchaniya [Glassy state. Proceedings of the 4th All-Union Conference]. Moscow; Leningrad: Nauka, 1965, pp. 64—68. (In Russ.)
20. Golubkov V. V. Relaxation of structure in the glass transition interval B2O3. Glass Physics and Chemistry, 1989, vol. 15, no. 3, pp. 467—479. (In Russ.)
21. Golubkov V. V. On the kinetics of the relaxation of the structure of sodium borate glasses in the glass transition interval from the RMU data. Glass Physics and Chemistry, 1999, vol. 25, no. 6, pp. 625—634. (In Russ.)
22. Golubkov V. V., Onushchenko P. A. Temperature dependences of density of sodium borosilicate glasses in equilibrium states at temperatures below a vitrification temperature. Glass Physics and Chemistry, 2013, vol. 39, no. 1, pp. 11—18. DOI: 10.1134/ S1087659613010070
23. Popescu M. A. Non-Crystalline Chalcogenides. Dodrecht; Boston; London: Kluwer Academic Publishers, 2000, 377 р.
24. Minaev V. S. Concept of polymeric polymorphous-crystalloid structure of glass and chalcogenide systems: structure and relaxation of liquid and glass. In: Semiconducting Chalcogenide Glass I. Eds: R. Fаirman, B. Ushkov, V. 78 of Semiconductors and semimetals. Amsterdam; New-York: Elsevier-Academic Press, 2004, pp. 139—179.
25. Minaev V. S., Timoshenkov S. P., Kalugin V. V. Some features of the glass transition process by the example of chalcgenide glass systems. J. Optoelectron. Advanced Materials, 2011, vol. 13, no. 11–12, pp. 1393—1399.
26. Minaev V. S., Parfenov N. M., Timoshenkov S. P., Kalugin V. V., Batyunya L. P., Mukimov D. Zh. The polymer-polymorphoid nature of glass aging process. Modern Electronic Materials, 2015, vol. 1, no. 4, pp. 97—102. DOI: 10.1016/j.moem.2016.02.002
27. Eisenberg A., Tobolsky A. V. Equilibrium polymerization of selenium. J. Polym. Sci., 1960, vol. 46, no. 147, pp. 19—28. DOI: 10.1002/ pol.1960.1204614703
28. Gerber Th., Himmel B., Lorenz H., Stachel D. Phase transitions vitreous and amorphous SiO2. Cryst. Res. Technol., 1988, vol. 23, no. 10-11, pp. 1293—1302. DOI: 10.1002/crat.2170231018
29. Minaev V. S. Polymorphic-crystalloid structure of glass. Glass Physics and Chemistry, 1996, vol. 22, no. 3, pp. 314—325. (In Russ.)
30. Pauling L. Obshchaya khimiya [General Chemistry]. Moscow: Mir, 1974. 747 p. (In Russ.)
31. Pavlаtou E. A., Papatheodorou G. N. Raman spectroscopic study BeCl2 in the crystalline, glassy and liquid states and a molten BeCl2—CsCl mixtures. Phys. Chem. Chem. Phys., 2000, vol. 2, no. 5, pp. 1035—1043. DOI: 10.1039/A909120C
32. Minaev V. S., Timoshenkov S. P., Chernykh S. P. Polymorphous-crystalloid nature of vitreous liquid H2O. J. Optoelectron. Advanced Materials, 2004, vol. 6, no. 1, pp. 103—112.
33. Minaev V. S., Parfenov N. M., Timoshenkov S. P., Vassiliev V. P., Kalugin V. V., Batyunya L. P., Mukimov D. Z. The polymer- polymorphoid nature of glass aging. J. Non-Cryst. Solids, 2014, vol. 404, pp. 174—181. DOI: 10.1016/j.jnoncrysol.2014.09.024
34. Minaev V., Terashkevich I., Timoshenkow S., Kalugin V., Novikov S. New paradigm of glass structure and phisicochemical essence of glass transition. Adv. Materials Reserch, 2008, vol. 39–40, pp. 121—126. DOI: 10.4028/www.scientific.net/AMR.39-40.121
35. Minaev V. S., Timoshenkov S. P., Kalugin V. V., Kovalev S. I. Genetic relationship of crystalline, liquid and vitreous states and its manifestation in thermo- and photoinduced structural transformations in a glass-forming substance. Sbornik trudov VI Mezhdunarodnoi konferentsii «Amorfnye i mikrokristallicheskie poluprovodniki» = Proceedings of the VI International Conference «Amorphous and Microcrystalline Semiconductors». St. Peterburg: Izd-vo Politekhnicheskogo universiteta, 2008. Pp. 201—202. (In Russ.)
36. Chen H. S., Kurkjian C. R. Sub-sub-Tg enthalpy relaxation in a B2O3 glass. J. Amer. Ceram. Soc., 1983, vol. 66, no. 9, pp. 613—619. DOI: 10.1111/j.1151-2916.1983.tb10608.x
37. Yue Y.-Zh. Characteristic temperature of enthalpy relaxation in glass. J. Non-Cryst. Solids, 2008, vol. 354, no. 12, pp. 1112—1118. DOI: 10.1016/j.jnoncrysol.2006.11.027
38. Ping Chen, Boolchand P., Georgiev D. G. Longterm aging of selenide glasses: evidence of sub-Tg endoterms and pre-Tg exoterms. J. Phys.: Condens. Matter., 2010, vol. 22, no. 6, art. no. 065104. (16 рp.). DOI: 10.1088/0953-8984/22/6/065104
39. Yue Yanzheng. Features of the relaxation in nyperquenched in organic glasses during annealing. Phys. Chem. Glasses, 2005, vol. 46, no. 4, pp. 354—358.
40. Stephens R. B. Relaxation effect in glassy selenium. J. Non-Cryst. Solids, 1976, vol. 20, no. 1, pp. 75—81. DOI: 10.1016/00223093(76)90108-3
41. Minaev V. S., Timoshenkov S. P., Kalugin V. V. Structural and phase transformations in condenced selenium. J. Optoelectron. Advanced Materials., 2005, vol. 7, no. 4, pp. 1717—1741.
42. Johari G. P. Water’s Tg-endoterm, sub-Tg peak of glasses and Tg of water. J. Chem. Phys., 2003, vol. 119, no. 5, pp. 2935—2937. DOI: 10.1063/1.1586256
Review
For citations:
Minaev V.S., Parfenov N.M., Timoshenkov S.P., Vassiliev V.P., Kalugin V.V., Mukimov D.Zh. Is not it time to go back to Tg Tamman? Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(2):133-143. (In Russ.) https://doi.org/10.17073/1609-3577-2016-2-133-143