Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Application of atomic–force microscope for creation of one–dimensional structure on the basis of GaAs/AlGaAs heterostructure

https://doi.org/10.17073/1609-3577-2018-4-227-232

Abstract

In the study of electron transport in low-dimensional structures, semiconductor heterostructures with a two-dimensional electron gas are often used. The conductive channel of these structures is separated from the gates by insulating regions, which can be formed in a varitey of ways. The peculiarities of such structures are the high quality of the initial plates and the need to change the topology in the research process. This makes the use of photolithography ineffective.
This paper discusses the technology of forming insulating grooves using an atomic force microscope — a method of pulsed force nanolithography, which allows both working with individual samples and forming narrow and deep grooves on the semiconductor that provide good insulating characteristics. The measured transport characteristics of the nanostructures created by this method confirm the presence of quantization of the channel conductivity and the absence of a noticeable number of introduced defects.

About the Authors

M. V. Stepushkin
Kotelnikov Institute of Radioengineering and Electronics of RAS (Fryazino Branch)
Russian Federation

1 Vvedensky Sq., Fryazino, Moscow region 141190

Mikhail V. Stepushkin: Junior Researcher



V. G. Kostishyn
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Vladimir G. Kostishyn: Dr. Sci. (Phys.-Math.), Professor, Head of Department of «Technology for Electronic materials» 



V. E. Sizov
Kotelnikov Institute of Radioengineering and Electronics of RAS (Fryazino Branch)
Russian Federation

1 Vvedensky Sq., Fryazino, Moscow region 141190

Vladimir E. Sizov: Cand. Sci. (Phys.- Math.), Head of Laboratory 196, Senior Researcher



A. G. Temiryazev
Kotelnikov Institute of Radioengineering and Electronics of RAS (Fryazino Branch)
Russian Federation

1 Vvedensky Sq., Fryazino, Moscow region 141190

 Alexei G. Temiryazev: Cand. Sci. (Phys.-Math.), Lead Researcher



References

1. Wagner R. S., Ellis W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett., 1964, vol. 4, no. 5, pp. 89—90. DOI: 10.1063/1.1753975

2. Yu D. P., Bai Z. G., Ding Y., Hang Q. L., Zhang H. Z., Wang J. J., Zou Y. H., Qian W., Xiong G. C., Zhou H. T., Feng S. Q. Nanoscale silicon wires synthesized using simple physical evaporation. Appl. Phys. Lett., 1998, vol. 72, no. 26, pp. 3458—3460. DOI: 10.1063/1.121665

3. Beenakker C. W. J., van Houten H. Quantum transport in semiconductor nanostructures. Solid State Phys., 1991, vol. 44, pp. 1—228. DOI: 10.1016/S0081-1947(08)60091-0

4. Berggern K.-F., Pepper M. Electrons in one dimension. Phil. Trans. R. Soc. A, 2010, vol. 368, no. 1914, pp. 1141—1162. DOI: 10.1098/rsta.2009.0226

5. Davies J. H., Larkin I. A., Sukhorukov E. V. Modeling the patterned two-dimensional electron gas: Electrostatics. J. Appl. Phys., 1995, vol. 77, no. 9, pp. 4504—4512. DOI: 10.1063/1.359446

6. Borisov V. I., Lapin V. G., Temiryazev A. G., Toropov A. I., Chmil’ A. I. Features of the conductance quantization for etched 1D channels. J. Commun. Technol. Electron., 2009, vol. 54, no. 4, pp. 468—472. DOI: 10.1134/S1064226909040123

7. Pepper M., Smith C. G., Brown R. J., Wharam D. A., Kelly M. J., Newbury R., Ahmed H., Hasko D. G., Peacock D. C., Frost J. E. F., Ritchie D. A., Jones G. A. C. One-dimensional ballistic transport of electrons. Semicond. Sci. Technol., 1990, vol. 5, no. 12, pp. 1185. DOI: 10.1088/0268-1242/5/12/007

8. Nieder J., Wieck A. D., Grambow P., Lage H., Heitmann D., von Klitzing K., Ploog K. One-dimensional lateral-field-effect transistor with trench gate-channel insulation. Appl. Phys. Lett., 1990, vol. 57, no. 25, pp. 2695—2697. DOI: 10.1063/1.103803

9. Wieck A. D., Ploog K. In-plane-gated quantum wire transistor fabricated with directly written focused ion beams. Appl. Phys. Lett., 1990, vol. 56, no. 10, pp. 928—930. DOI: 10.1063/1.102628

10. Tip-Based Nanofabrication. Fundamentals and Applications. Ed. A. A. Tseng. New York: Springer-Verlag, 2011, 466 p. DOI: 10.1007/978-1-4419-9899-6

11. Ghandhi S. K. VLSI Fabrication Principles: Silicon and Gallium Arsenide. New York: Wiley, 1994, 864 p.

12. Held R., Vancura T., Heinzel T., Ensslin K., Holland M., Wegscheider W. In-plane gates and nanostructures fabricated by direct oxidation of semiconductor heterostructures with an atomic force microscope. Appl. Phys. Lett., 1998, vol. 73, no. 2, pp. 262—264. DOI: 10.1063/1.121774

13. Matsumoto K. Application of scanning tunneling/atomic force microscope nanooxidation process to room temperature operated single electron transistor and other devices. Scanning Microscopy, 1998, vol. 12, no. 1, pp. 61—69.

14. Borisov V. I., Lapin V. G., Sizov V. E., Temiryazev A. G. Transistor structures with controlled potential profile in one-dimensional quantum channel. Tech. Phys. Lett., 2011, vol. 37, no. 2, pp. 136—139. DOI: 10.1134/S1063785011020040

15. Mel'nikov M. Yu., Khrapai V. S., Schuh D. Formation of nanostructures in a heterojunction with a deeply located 2D electron gas via the method of high-voltage anodic-oxidation lithography using an atomic-force microscope. Instruments and Experimental Techniques, 2008, vol. 51, no. 4, pp. 617—624. DOI: 10.1134/S0020441208040209

16. Baer S., Ensslin K. Transport spectroscopy of confined fractional quantum hall systems. Springer Series in Solid-State Sciences. Vol. 183. Springer, 2015. 308 p. DOI 10.1007/978-3-319-21051-3

17. Temiryazev A. Pulse force nanolithography on hard surfaces using atomic force microscopy with a sharp single-crystal diamond tip. Diamond and Related Materials, 2014, vol. 48, pp. 60—64. DOI: 10.1016/j.diamond.2014.07.001

18. Temiryazeva M. P., Danilov Yu. A., Zdoroveishchev A. V., Kudrin A. V., Temiryazev A. G. Structuring CoPt magnetic films using atomic force microscopy. Materialy XX Mezhdunarodnogo simpoziuma «Nanofizika i nanoelektronika» = Proceedings of the XX International Symposium «Nanophysics and Nanoelectronics». N. Novgorod, 2016, vol. 1, pp. 328—329. (In Russ.)

19. Jin Y. Ohmic contact to n-type bulk and δ doped Al0.3Ga0.7As/GaAs MODFET type heterostructures and its applications. Solid-State Electron., 1991, vol. 34, no. 2, pp. 117—121. DOI: 10.1016/0038-1101(91)90076-B

20. Göktaş O., Weber J., Weis J., von Klitzing K. Alloyed ohmic contacts to two-dimensional electron system in AlGaAs/GaAs heterostructures down to submicron length scale. Physica E: Low-dimensional Systems and Nanostructures, 2008, vol. 40, no. 5, pp. 1579—1581. DOI: 10.1016/j.physe.2007.09.115

21. Kurochka S. P., Stepushkin M. V., Borisov V. I. Features of creating Ohmic contacts for GaAs/AlGaAs heterostructures with a two-dimensional electron gas. Russ. Microelectron., 2017, vol. 46, no. 8, pp. 600—607. DOI: 10.1134/S106373971708011X

22. Borisov V. I., Kuvshinova N. A., Sizov V. E., Stepushkin M. V., Temiryazev A. G., Kurochka S. P. Semiconductor structures with a one-dimensional quantum channel and in-plane side gates fabricated by pulse force nanolithography. Semiconductors, 2017, vol. 51, no. 11, pp. 1481—1484. DOI: 10.1134/S1063782617110082


Review

For citations:


Stepushkin M.V., Kostishyn V.G., Sizov V.E., Temiryazev A.G. Application of atomic–force microscope for creation of one–dimensional structure on the basis of GaAs/AlGaAs heterostructure. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(4):227-232. https://doi.org/10.17073/1609-3577-2018-4-227-232

Views: 546


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)