Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Features of crystal structure and texture of isotropic and anisotropic polycrystalline hexagonal ferrites BaFe12O19, obtained by the method of radiation-thermal sintering

https://doi.org/10.17073/1609-3577-2017-3-220-234

Abstract

In this work the crystal structure and texture of isotropic and anisotropic polycrystalline hexagonal ferrites BaFe12O19 obtained by the method of radiation-thermal sintering was studied using X-ray diffraction and X-ray phase analysis. Crude blanks of both isotropic and anisotropic hexaferrites were obtained by the standard method of ceramic technology from one raw material (Fe2O3 and BaCO3 of the “analytical grade” brand) and on the same equipment with the only difference that the pressing of anisotropic blanks was carried out in magnetic field H = 10 kOe. For sintering raw billets a linear electron accelerator ILU-6 (electron energy Ee = 2.5 MeV) INP them. G.I. Budker SB RAS was used. Samples were sintered in air for one hour at 1200 °C, 1250 °C, 1300 °C, and 1350 °C.
It is shown for the first time that using the RTS technology, using raw blanks from ferritized charge, could be obtained high-quality single-phase isotropic and anisotropic hexaferrites BaFe12O19. The data on the features of the crystal structure and texture of the obtained objects of research are given.
It was first shown that for polycrystalline hexagonal barium ferrites of type M, the dependence of the «pref.orient.o1» predominant orientation of the crystal texture parameter on the degree of magnetic texture f is described by the expression “pref.orient.o1” = –0.005f + 0.6886.

About the Authors

I. M. Isaev
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Igor M. Isaev: Cand. Sci. (Eng.), Associate Professor, Vice-Rector



S. V. Shcherbakov
JSC “RPC “Istok” named after Shokin”
Russian Federation

2a Vokzalnaya Str., Fryazino, Moscow Region 141190

Sergey V. Shcherbakov: Cand. Sci. (Eng.), Deputy General Director - Director for Research



V. G. Kostishyn
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Vladimir G. Kostishyn: Dr. Sci. (Phys.-Math.), Professor, Head of the Department of Technology for Electronic Materials



A. G. Nalogin
JSC “RPC “Istok” named after Shokin”
Russian Federation

2a Vokzalnaya Str., Fryazino, Moscow Region 141190

Aleksey G. Nalogin: Cand. Sci. (Eng.), Head of NPK-9



V. V. Mokljak
G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine
Ukraine

36 Boulevard Acad. Vernadsky, Kiev 03680

Vladimir V. Mokljak: Cand. Sci. (Phys.-Math.), Senior Researcher



B. K. Ostafijchuk
Vasyl Stefanyk Precarpathian National University
Ukraine

57 T. Shevchenko Str., Ivano-Frankivsk, 76025

Bogdan K. Ostafijchuk: Dr. Sci. (Phys.-Math.), Professor, Head of Department



A. A. Alekseev
National University of Science and Technology MISiS; JSC “RPC “Istok” named after Shokin”
Russian Federation

4 Leninsky Prospekt, Moscow 119049;

2a Vokzalnaya Str., Fryazino, Moscow Region 141190

Albert A. Alekseev:Head of Sector 91



V. V. Korovushkin
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Vladimir V. Korovushkin: Dr. Sci. (Geol.-Mineral.), Professor



E. A. Belokon
National University of Science and Technology MISiS; JSC “RPC “Istok” named after Shokin”

4 Leninsky Prospekt, Moscow 119049;

2a Vokzalnaya Str., Fryazino, Moscow Region 141190

Evgeny A. Belokon: Engineer of the Second Category



M. V. Kalinjuk
Vasyl Stefanyk Precarpathian National University
Ukraine

57 T. Shevchenko Str., Ivano-Frankivsk, 76025

Mihail V. Kalinjuk: Cand. Sci. (Phys.-Math.), Senior Researcher,



M. A. Mihaylenko
Institute of Solid State Chemistry and Mechanochemistry of SB RAS
Russian Federation

18 Kutateladze Str., Novosibirsk, 630128

Mihail A. Mihaylenko: Cand. Sci. (Chem.), Senior Researcher



M. V. Korobeynikov
Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences
Russian Federation

11 Acad. Lavrentieva Prospekt, Novosibirsk 630090

Mihail V. Korobeynikov: Cand. Sci. (Eng.), Senior Researcher, Laboratory 14



A. A. Bryazgin
Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences
Russian Federation

11 Acad. Lavrentieva Prospekt, Novosibirsk 630090

Aleksandr A. Bryazgin: Cand. Sci. (Eng.), Head of Laboratory 14



D. V. Salogub
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Dmitriy V. Salogub: Magister



References

1. Adelsköld V. X-ray studies on magneto-plumbite, PbO • 6Fe2O3 and other substances resembling «beta-alumina», Na2O • 11Al2O3. Arkiv för kemi. Mineralogi och Geologi, 1938, vol. 12A, no. 29, pp. 1—9.

2. Özgür Ü., Alivov Y., Morkoç H. Microwave ferrites, part 1: fundamental properties. J. Materials Science: Materials in Electronics, 2009, vol. 20, no. 9, pp. 789—834. DOI: 10.1007/s10854-009-9923-2

3. Harris V. G. Modern microwave ferrites. IEEE Trans. Mag., 2012, vol. 48, no. 3, pp. 1075—1104. DOI: 10.1109/TMAG.2011.2180732

4. Lax B., Button K. J. Sverkhvysokochastotnye ferrity i ferrimagnetiki [Microwave ferrites and ferrimagnetics]. Moscow: Mir, 1965, 676 p.

5. Shcherbakov S. V. The development of microwave electronics in the framework of the implementation of state programs. Materialy VI-i Vserossiiskoi nauchno-tekhnicheskoi konferentsii «Elektronika i mikroelektronika SVCh» = Proceedings of the VIth All-Russian Scientific-Technical Conference "Electronics and Microelectronics of Microwave". St. Petersburg: SPbGETU «LETI», 2017, pp. 15—23. (In Russ.)

6. Shcherbakov S. V. The development of microwave electronics in Russia. Materialy nauchno-tekhnicheskoi konferentsii «SVCh-elektronika-2016» = Materials of the scientific and technical conference «Microwave Electronics-2016». Fryazino, 2016. (In Russ.)

7. Ustinov A., Kochemasov V., Khasyanova E. Ferrite materials for microwave electronics. selection prime criterions. Electronics: Science, Technology, Business, 2015, no. 8, pp. 86—92. (In Russ.). URL: http://www.electronics.ru/files/article_pdf/4/article_4907_795.pdf

8. Harinskaya M. Microwave ferrite materials. Well how can microwave devices do without them? Electronics: Science, Technology, Business, 2000, no. 1, pp. 24—27. (In Russ.). URL: http://www.electronics.ru/files/article_pdf/1/article_1518_892.pdf

9. Letyuk L. M., Kostishin V. G., Gonchar A. V. Tekhnologiya ferritovykh materialov magnitoelektroniki [Technology of ferrite materials of magnetoelectronics]. Moscow: MISiS, 2005, 352 p. (In Russ.)

10. Antsiferov V. N., Letyuk L. M., Andreev V. G., Gonchar A. V., Dubrov A. N., Kostishyn V. G., Satin A. I. Problemy poroshkovogo materialovedeniya. Chast’ V. Tekhnologiya proizvodstva poroshkovykh ferritovykh materialov [Problems of powder materials. Part V. The technology of production of powdered ferrite materials]. Ekaterinburg: Uro RAN, 2005. 408 p. (In Russ.)

11. Yakovlev Yu. M., Gendelev S. Sh. Monokristally ferritov v radioelektronike [Single crystals of ferrites in radio electronics]. Moscow: Sovetskoe radio, 1975, 360 p. (In Russ.)

12. Kostishyn V. G., Korovushkin V. V., Chitanov D. N., Korolev Yu. M. Obtaining and properties of hexaferrite BaFe12O19 for high-coercivity permanent magnets and substrates microstrip microwave devices of mm-range. J. Nano- Electron. Phys., 2015, vol. 7, no. 4, pp. 04057-1—04057-47. URJ: http://nbuv.gov.ua/UJRN/jnef_2015_7_4_59

13. Andreev V. G., Kostishyn V. G., Ursulyak N. D., Nalogin A. G., Kudashov A. A. Influence of modes shredding of source components by processes to synthesis and activity of powder sintering hexaferrite. J. Nano- Electron. Phys., 2015, vol. 7, no. 4, p. 04070. URL: https://jnep.sumdu.edu.ua/download/numbers/2015/4/articles/jnep_2015_V7_04070.pdf

14. Kostishyn V. G., Panina L. V., Timofeev A. V., Kozhitov L. V., Kovalev A. N., Zyuzin A. K. Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19. J. Mag. Mag. Mater., 2016, vol. 400, pp. 327—332. DOI: 10.1016/j.jmmm.2015.09.011

15. Kostishyn V. G., Panina L. V., Kozhitov L. V., Timofeev A. V., Kovalev A. N. Synthesis and multiferroic properties of M-type SrFe12O19 hexaferrite ceramics. J. Alloys Compd., 2015, vol. 645, pp. 297—300. DOI: 10.1016/j.jallcom.2015.05.024

16. Trukhanov A. V., Trukhanov S. V., Kostishyn V. G., Panina L. V., Korovushkin V. V., Turchenko V. A, Vinnik D. A., Yakovenko E. S., Zagorodnii V. V., Launetz V. L., Oliynyk V. V., Zubar T. I., Tishkevich D. I., Trukhanova E. L. Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Mag. Mag. Mater., 2018, vol. 462, pp. 127—135. DOI: 10.1016/j.jmmm.2018.05.006

17. Trukhanov A. V., Kostishyn V. G., Panina L. V., Korovushkin V. V., Turchenko V. A., Thakur P., Thakur A., Yang Y., Vinnik D. A., Yakovenko E. S., Matzui L. Yu., Trukhanova E. L., Trukhanov S. V. Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd., 2018, vol. 754, pp. 247—256. DOI: 10.1016/j.jallcom.2018.04.150

18. Galtseva O. V. Solid-phase synthesis of lithium ferrites in a beam of accelerated electrons: Diss. Cand. Sci (Eng.). Tomsk, 2009, 160 p. (In Russ.)

19. Vasendina E. A. Radiation-thermal synthesis of doped lithium ferrites in an accelerated electron beam: Diss. ... Cand. Sci. (Eng.). Tomsk, 2011, 169 p. (In Russ.)

20. Gyngazov S. A. Radiation-enhanced thermal activation of diffusion processes in oxide ceramics: Diss. ... Dr. Sci. (Eng.). Tomsk, 2011, 217 p. (In Russ.)

21. Lysenko E. N. Radiation-thermal activation of oxygen diffusion in polycrystalline lithium-titanium ferrites: Diss. ... Cand. Sci. (Phys.-Math.). Tomsk, 2003, 170 p.

22. Lysenko E. N., Vasendina E. A., Vlasov V. A., Sokolovsky A. N., Kondratyuk A. A., Galtseva O. V. Magnetization of the Li2CO3—Fe2O3—ZnO powder mixture ferritized in a beam of accelerated electrons. Izvestiya vysshikh uchebnykh zavedenii. Fizika, 2011, vol. 54, no. 1–3, pp. 71—74. (In Russ.). URL: https://www.lib.tpu.ru/fulltext/v/Conferences/2011/K03/314.pdf

23. Usmanov R. U. Formation of the structure and magnetic properties of polycrystalline lithium-titanium ferrites under radiation-thermal exposure: Diss. ... Cand. Sci. (Phys.-Math.). Tomsk, 2005, 159 p. (In Russ.)

24. Shabardin R. S. Development of the technology of radiation-thermal sintering of lithium-titanium ferrite ceramics: Diss. ... Cand. Sci. (Eng.). Tomsk, 2004, 162 p. (In Russ.)

25. Surzhikov A. P., Pritulov A. M., Lysenko E. N., Sokolovskiy A. N., Vlasov V. A., Vasendina E. A. Calorimetric investigation of radiation-thermal synthesized lithium pentaferrite. J. Therm. Anal. Calorim., 2010, vol. 101, no. 1, pp. 11—13. DOI: 10.1007/s10973-010-0788-7

26. Surzhikov А. Р., Pritulov A. M., Usmanov R. U., Galtseva O. V. Synthesis of lithium orthoferrite in the beam of accelerated electrons. Proc. Conf. "Chaos and Structures in Nonlinear Systems. Theory and Experiment". Astana (Kazakhstan): ENU, 2006, pp. 198—200.

27. Surzhikov A. P., Pritulov A. M., Galtseva O. V., Usmanov R. U., Malyshev A. V., Bezuglov V. V Effect of the degree of compaction of reagents on the solid-phase synthesis of lithium pentaferrite in a beam of accelerated electrons. V sbornike: Radiatsionnaya fizika tverdogo tela = In Proc.: Radiation Physics of Solids. Moscow: GNU NII MPT, 2007, pp. 475—478. (In Russ.)

28. Surzhikov A. P., Pritulov A. M., Galtseva O. V., Usmanov R. U., Sokolovsky A. N., Vlasov V. A. Formal kinetic analysis of solid-phase synthesis of lithium pentaferrite in a beam of accelerated electrons. V sbornike: Radiatsionnaya fizika tverdogo tela = In Proc.: Radiation Physics of Solids. Moscow: GNU NII MPT, 2008, pp. 365—371. (In Russ.)

29. Surzhikov A. P. Radiation-thermal sintering of ferrite ceramics: Summary Diss. … Dr. Sci. (Phys.-Math.). Blagoveshchensk, 1993, 36 p. (In Russ.)

30. Kostishin V. G., Andreyev V. G., Kaneva I. I., Panina L. V., Chitanov D. N., Yudanov N. A., Komlev A. S., Nikolaev A. N. Receiving by the method of radiation and thermal agglomeration of Mg-Zn-ferrite with level of Ni-Zn-ferrite properties of brand 600HH. Proc. Southwest State University, 2013, no. 5, pp. 228—235. (In Russ.)

31. Kostishin V. G., Korovushkin V. V., Panin L. V., Komlev A. S., Yudanov N. A., Adamtsov A. Yu., Nikolaev A. N., Andreev V. G. Structure and properties of Mn-Zn ferrite of the ceramics received by the method of radiation and thermal agglomeration. Proc. South-West State University. Series Technics and Technologies, 2013, no. 2, pp. 53—59. (In Russ.)

32. Kostishyn V. G., Kozitov L. V., Korovushkin V. V., Andreev V. G., Chitanov D. N., Yudanov N. A., Morchenko A. T., Komlev A. S., Adamtsov A. Y., Nikolaev A. N. Getting brand 2000NN soft ferrite by radiation-thermal sintering from charge pre-ferritization and charge without ferritization. Proc. South-West State University. Series Physics and Chemistry, 2013, no. 2, pp. 8—18. (In Russ.)

33. Kostishin V. G., Andreev V. G., Korovushkin V. V., Chitanov D. N., Yudanov N. A., Morchenko A. T., Komlev A. S., Adamtsov A. Yu., Nikolaev A. N. Preparation of 2000NN ferrite ceramics by a complete and a short radiation-enhanced thermal sintering process. Inorg Mater., 2014, vol. 50, no. 12, pp. 1317—1323. DOI: 10.1134/S0020168514110089

34. Kostishin V. G., Andreev V. G., Panina L. V., Chitanov D. N., Yudanov N. A., Komlev A. S., Nikolaev A. N. Soft-magnetic Mg-Zn ferrite ceramics comparable in performance to 600NN Ni-Zn ferrite: Fabrication by radiation-enhanced thermal sintering. Inorg. Mater., 2014, vol. 50, no. 11, pp. 1174—1178. DOI: 10.1134/S0020168514110077

35. Kostishin V. G., Korovushkin V. V., Panina L. V., Andreev V. G., Komlev A. S., Yudanov N. A., Adamtsov A. Yu., Nikolaev A. N. Magnetic structure and properties of Mn-Zn ferrites prepared by radiation-enhanced thermal sintering. Inorg. Mater., 2014, vol. 50, no. 12, pp. 1252—1256. DOI: 10.1134/S0020168514120115

36. Kiselev B. G., Kostishin V. G., Komlev A. S., Lomonosova N. V. Substantiation of economic advantages of technology of radiation-thermal agglomeration of ferrite ceramics. Tsvetnye Metally, 2015, vol. 2015, no. 4, pp. 7—11. DOI: 10.17580/tsm.2015.04.01

37. Kostishyn V. G., Komlev A. S., Korobeynikov M. V., Bryazgin A. A., Shvedunov V. I., Timofeev A. V., Mikhailenko M. A. Effect of a temperature mode of radiation-thermal sintering the structure and magnetic properties of Mn-Zn-ferrites. J. Nano- Electron. Phys., 2015, vol. 7, no. 4, p. 04044(4pp). URL: http://essuir.sumdu.edu.ua/handle/123456789/43251

38. Kostishyn V., Isaev I., Scherbakov S., Nalogin A., Belokon E., Bryazgin A. Obtaining anisotropic hexaferrites for the base layers of microstrip SHF devices by the radiation-thermal sintering. Eastern-European Journal of Enterprise Technologies, 2016, vol. 5, no. 8, pp. 32—39.

39. Isaev I. M. Radiation-thermal sintering in a beam of fast electrons of polycrystalline hexagonal ferrites BaFe12O19 and BaFe12-х(Al,Ni,Ti,Mn)хO19 for permanent magnets and substrates of microstrip microwave devices: Summary Diss. ... Cand. Sci. (Eng.). Moscow, 2017, 31 p. (In Russ.)

40. Komlev A. S. Radiation-thermal sintering in a beam of fast electrons of polycrystalline ferrous spinels: Summary Diss. ... Cand. Sci. (Eng.). Moscow, 2018, 22 p. (In Russ.)

41. Kostishin V. G. Isaev I. M., Komlev A. S., Timofeev A. V., Shcherbakov S. V. et al. Features of the crystal structure and phase composition of anisotropic hexagonal ferrites BaFe12O19 and BaFe9,5Al2,5O19, obtained by the method of radiation-thermal sintering. Materialy KhKhIV Mezhdunarodnoi konferentsii “Elektromagnitnoe pole i materialy (fundamental'nye fizicheskie issledovaniya)” = Materials of the XXIV International conference "Electromagnetic field and materials (fundamental physical research)". Moscow, 2016, pp. 409—424. (In Russ.)

42. Naiden E. P., Minin R. V., Itin V. I., Zhuravlev V. A. Influence of radiation-thermal treatment on the phase composition and structural parameters of the SHS product based on W-type hexaferrite. Russ Phys J., 2013, V. 56, no. 6, pp. 674—680. DOI: 10.1007/s11182-013-0084-7

43. Zhuravlev V. A., Naiden E. P., Minin R. V., Itin V. I., Suslyaev V. I., Korovin E. Yu. Radiation-thermal synthesis of W-type hexaferrites. IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 81, pp. 012003. DOI: 10.1088/1757-899X/81/1/012003

44. Naiden E. P., Zhuravlev V. A., Minin R. V., Suslyaev V. I., Itin V. I., Korovin E. Yu. Structural and magnetic properties of SHS-produced multiphase W-type hexaferrites: Influence of radiation-thermal treatment. Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 3, pp. 148—151. DOI: 10.3103/S1061386215030073

45. Komlev A. S., Isaev I. M., Kostishin V. G., Chitanov D. N., Timofeev A. V. Cell for radiation-thermal sintering. KNOW-HOW. Zaregistrirovano v Depozitarii nou-khau NITU «MISiS» № 81-219-2016 OIS ot 29 dekabrya 2016 g. = Registered in the NUST MISIS Know-How Depository No. 81-219-2016 OIS, December 29, 2016. (In Russ.)

46. Toraya H., Marumo F. Preferred orientation correction in powder patter-fitting. Mineralogical Journal, 1981, vol. 10, no. 5, pp. 211—221.

47. Database for fully identified inorganic crystal structures. (In Russ.). URL: https://icsd.fiz-karlsruhe.de/search/

48. Kaneva I. I., Kostishin V. G., Andreev V. G., Chitanov D. N., Nikolaev A. N., Kislyakova E.I. Оbtaining Barium Hexaferrite Brand 7BI215 with Isotropic Properties. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2014, no. 3, pp. 183—188. (In Russ.). DOI: 10.17073/1609-3577-2014-3-183-188


Review

For citations:


Isaev I.M., Shcherbakov S.V., Kostishyn V.G., Nalogin A.G., Mokljak V.V., Ostafijchuk B.K., Alekseev A.A., Korovushkin V.V., Belokon E.A., Kalinjuk M.V., Mihaylenko M.A., Korobeynikov M.V., Bryazgin A.A., Salogub D.V. Features of crystal structure and texture of isotropic and anisotropic polycrystalline hexagonal ferrites BaFe12O19, obtained by the method of radiation-thermal sintering. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(3):220-234. (In Russ.) https://doi.org/10.17073/1609-3577-2017-3-220-234

Views: 776


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)