Radioactive isotopes betavoltaic generator technology
https://doi.org/10.17073/1609-3577-2016-4-221-234
Abstract
In this article we have analyzed radioactive isotope applications in the technology of autonomous power supplies and the materials used in radioisotope thermoelectric generators (RTGs), justified the advantage of manufacturing betavoltaic generators, compared them with other electric power sources and considered the mechanism of β−decay and positioned it among other types of nuclear transformations. We have also drawn up the basic radiation safety requirements to the materials used for the hull and the converter, analyzed some earlier designs of radioisotope betavoltaic sources and set up a list of isotopes suitable as energy sources in betavoltaic generators. Furthermore, we have analyzed methods of obtaining radioactive materials which exhibit β−decay, their basic properties and abundance in nature. In conclusion, the choice of nickel−63 isotope has been selected as preferable for betavoltaic generators due to the optimum combination of half−life, average particle energy and radiation intensity.
About the Authors
A. S. BykovRussian Federation
Alexander S. Bykov — Cand. Sci. (Eng.), Associate Professor.
4 Leninsky Prospekt, Moscow 119049.
M. D. Malinkovich
Russian Federation
Mikhail D. Malinkovich — Cand. Sci. (Phys.−Math.), Associate Professor.
4 Leninsky Prospekt, Moscow 119049.
I. V. Kubasov
Russian Federation
Ilya V. Kubasov — Assistant.
4 Leninsky Prospekt, Moscow 119049.
A. M. Kislyuk
Russian Federation
Alexander M. Kislyuk — Master Student.
4 Leninsky Prospekt, Moscow 119049.
D. A. Kiselev
Russian Federation
Dmitry A. Kiselev — Cand. Sci. (Phys.−Math.), Senior Researcher.
4 Leninsky Prospekt, Moscow 119049.
S. V. Ksenich
Russian Federation
Sergey V. Ksenich — Engineer.
4 Leninsky Prospekt, Moscow 119049.
R. N. Zhukov
Russian Federation
Roman N. Zhukov — Engineer.
4 Leninsky Prospekt, Moscow 119049.
A. A. Temirov
Russian Federation
Alexander A. Temirov — Assistant.
4 Leninsky Prospekt, Moscow 119049.
M. V. Chichkov
Russian Federation
Maxim V. Chichkov — Engineer.
4 Leninsky Prospekt, Moscow 119049.
A. A. Polisan
Russian Federation
Andrey A. Polisan — Dr. Sci. (Eng.), Professor.
4 Leninsky Prospekt, Moscow 119049.
Yu. N. Parkhomenko
Russian Federation
Yury N. Parkhomenko — Dr. Sci. (Phys.−Math.), Professor.
4 Leninsky Prospekt, Moscow 119049.
References
1. Koutitas G., Demestichas P. A review of energy efficiency in telecommunication networks. Telfor journal, 2010, vol. 2, no. 1, pp. 2—7. URL: http://journal.telfor.rs/Published/Vol2No1/Vol-2No1_A1.pdf
2. Bose B. K. Global energy scenario and impact of power electronics in 21st century. IEEE Transactions on Industrial Electronics, 2013, vol. 60, no. 7, pp. 2638—2651. DOI: 10.1109/TIE.2012.2203771
3. Paradiso J. A., Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 2005, vol. 4, no. 1, pp. 18—27. DOI: 10.1109/MPRV.2005.9
4. Moseley H. G. J., Fellow J. H. The Attainment of high potentials by the use of radium. Proc. Royal Society of London A, 1913, vol. 88, no. 605. pp. 471—476. DOI: 10.1098/rspa.1913.0045
5. Singh N. Radioisotopes — Applications in Physical Sciences. Rijeka (Croatia): InTech, 2011. 496 p. DOI: 10.5772/858
6. Huffman F. N., Norman C. Nuclear−fueled cardiac pacemakers. Chest, 1974, vol. 65, no. 6, pp. 667— 672. DOI: 10.1378/chest.65.6.667
7. Wei X, Liu J. Power sources and electrical recharging strategies for implantable medical devices. Frontiers of Energy and Power Engineering in China, 2008, vol. 2, no. 1, pp. 1—13. DOI: 10.1007/s11708-008-0016-3
8. Whalen S. A., Apblett C. A., Aselage T. L. Improving power density and efficiency of miniature radioisotopic thermoelectric generators. J. Power Sources, 2008, vol. 180, no. 1, pp. 657—663. DOI: 10.1016/j.jpowsour.2008.01.080
9. Olsen L. C, Cabauy P, Elkind B. J. Betavoltaic power sources. Physics Today, 2012, vol. 65, no. 12, pp. 35—38. DOI: 10.1063/PT.3.1820
10. Seaborg G. T. Table of isotopes. Rev. Modern Physics, 1944, vol. 16, no. 1, pp. 1—32. DOI: 10.1103/RevModPhys.30.585
11. Baranov V. Yu. Izotopy: svoistva, poluchenie, primenenie [Isotopes: properties, production, application]. Moscow: Fizmatlit, 2005. 600 p. (In Russ.)
12. Wu Ts. S., Moshkovskii S. A. Beta−raspad [Beta decay]. Moscow: Atomizdat, 1970. 397 p. (In Russ.)
13. Lewis V. E. Beta decay of tritium. Nuclear Phys., 1970, vol. A151, pp. 120—128. DOI: 10.1016/0375-9474(70)90972-3
14. Daris R., St−Pierre C. Beta decay of tritium. Nuclear Phys., 1969, vol. A138, pp. 545—555. DOI: 10.1016/0375-9474(69)90237-1
15. Windle W. F. Microwatt radioisotope energy converters. IEEE Transactions on Aerospace, 1964, vol. 2, no. 2, pp. 646—651. DOI: 10.1109/TA.1964.4319649
16. Rappaport P., Linder E. G. Radioactive charging effects with a dielectric medium. J. Appl. Phys., 1953, vol. 24, no. 9, pp. 1110—1114. DOI: 10.1063/1.1721457
17. Müller S., Shiping Ch., Daniel H., Dragoun O., Dragounová N., Hagn H., Hechtl E., Hiddemann K.−H., Špalek A. Search for an admixture of a 17 keV neutrino in the β decay of 35S. Zeitschrift für Naturforschung A, 1994, vol. 49, no. 9, pp. 874—884. DOI: 10.1515/zna-1994-0910
18. Thoennessen M. Discovery of the isotopes with 11 ≤ Z ≤ 19. Atomic Data and Nuclear Data Tables, 2012, vol. 98, no. 5, pp. 933—959. DOI: 10.1016/j.adt.2011.09.002
19. Bogue R. Powering tomorrow’s sensor: a review of technologies. Pt 1. Sensor Review, 2010, vol. 30, no. 3, pp. 182—186. DOI: 10.1108/02602281011051344
20. Meier D. E., Garnov A. Y., Robertson J. D., Kwon J. W., Wacharasindhu T. Production of 35S for a liquid semiconductor betavoltaic. J. Radioanalytical and Nuclear Chemistry, 2009, vol. 282, no. 1, pp. 271—274. DOI: 10.1007/s10967-009-0157-9
21. Heim M., Fritsch A., Schuh A., Shore A., Thoennessen M. Discovery of the krypton isotopes. Atomic Data and Nuclear Data Tables, 2010, vol. 96, no. 4, pp. 333—340. DOI: 10.1016/j.adt.2010.01.001
22. Collon P., Kutschera W., Lu Z.−T. Tracing noble gas radionuclides in the environment. Annual Review of Nuclear and Particle Science, 2004, vol. 54, pp. 39—67. DOI: 10.1146/annurev.nucl.53.041002.110622
23. Eiting C. J., Krishnamoorthy V., Romero E., Jones S. Betavoltaic power cells. Proc. of the 42nd Power Sources Conf., 2006, pp. 601—605.
24. Thoennessen M. Discovery of isotopes with Z ≤ 10. Atomic Data and Nuclear Data Tables, 2012, vol. 98, no. 1, pp. 43—62. DOI: 10.1016/j.adt.2011.08.002
25. Lewis G. N., Spedding F. H. A spectroscopic search for H3 in concentrated H2. Physical Review, 1933, vol. 43, no. 12, pp. 964—966. DOI: 10.1103/PhysRev.43.964
26. Eidinoff M. L. Upper limit to the tritium content of ordinary water. The Journal of Chemical Physics, 1947, vol. 15, no. 6, pp. 416. DOI: 10.1063/1.1746547
27. Suhaimi A., Wölfle R., Qaim S. M., Warwick P., Stöcklin G. Measurement of 14N(n,t)12C reaction cross section in the energy range of 5.0 to 10.6 MeV. Radiochimica Acta, 1988, vol. 43, no. 3, pp. 133—138. DOI: 10.1524/ract.1988.43.3.133
28. Oliver B. M., Farrar IV H., Bretscher M. M. Tritium half−life measured by helium−3 growth. Applied Radiation and Isotopes, 1987, vol. 38, no. 11, pp. 959—965. DOI: 10.1016/0883-2889(87)90268-1
29. Myers E. G., Wagner A., Kracke H., Wesson B. A. Atomic masses of tritium and helium−3. Phys. Rev. Lett., 2015, vol. 114, no. 1, pp. 013003—1−5. DOI: 10.1103/PhysRevLett.114.013003
30. Oliphant M. L. E., Harteck P., Rutherford O. M. Transmutation effects observed with heavy hydrogen. Proc. Royal Society of London A, 1934, vol. 144, no. 853, pp. 692—703. DOI: 10.1098/rspa.1934.0077
31. Morgan L., Pasley J. Tritium breeding control within liquid metal blankets. Fusion Engineering and Design, 2013, vol. 88, no. 3, pp. 107—112. DOI: 10.1016/j.fusengdes.2012.11.011
32. Matsuura H., Nakaya H., Nakao Y., Shimakawa S., Goto M., Nakagawa Sh., Nishikawa M. Evaluation of tritium production rate in a gas−cooled reactor with continuous tritium recovery system for fusion reactors. Fusion Engineering and Design, 2013, vol. 88, no. 8–9, pp. 2219—2222. DOI: 10.1016/j.fusengdes.2013.05.022
33. Engelkemeir A. G., Hamill W. H., Inghram M. G., Libby W. F. The half−life of radiocarbon (C14). Phys. Rev., 1949, vol. 75, no. 12, pp. 1825—1833. DOI: 10.1103/PhysRev.75.1825
34. Langer L. M., Motz J. W., Price, Jr. H. C. Low energy Beta− Ray spectra: Pm147 S35. Phys. Rev., 1950, vol. 77, no. 7, pp. 798—806. DOI: 10.1103/PhysRev.77.798
35. Korff S. A. On the contribution to the ionization at sea−level produced by the neutrons in the cosmic radiation. Terrestrial Magnetism and Atmospheric Electricity, 1940, vol. 45, no. 2, pp. 133—134. DOI: 10.1029/TE045i002p00133
36. Hannа G. C., Primeau D. B., Tunnicliffe P. R. Thermal neutron cross sections and resonance integrals of the reactions O17(n,α) C14, Ar36(n,α)S33, and N14(n,p)C14. Canadian Journal of Physics, 1961, vol. 39, no. 12, pp. 1784—1806. DOI: 10.1139/p61-201
37. Konstantinov E. A., Korablev N. A., Solov’ev E. N., Shamov V. P., Fedorov V. L., Litvinov A. M. 14C emission from RBMK−1500 reactors and features determining it. Soviet Atomic Energy, 1989, vol. 66, no. 1, pp. 77—79. DOI: 10.1007/BF01121081
38. Choppin G., Liljenzin J.−O., Rydberg J., Ekberg C. Radiochemistry and Nuclear Chemistry. Amsterdam; Boston; Heidelberg; London; New York; Oxford; Paris; San Diego; San Francisco; Sydney; Tokyo: Academic Press (Elsevier), 2013. 866 p. DOI: 10.1016/B978-0-12-405897-2.01001-6
39. Mannik L., Brown S. K. Laser enrichment of carbon−14. Appl. Phys. B, 1985, vol. 86, no. 2, pp. 79—86. DOI: 10.1007/BF00692553
40. Voges R., Heys J. R., Moenius T. Preparation of compounds labeled with tritium and carbon−14. Wiley, 2009. 682 p.
41. Garofali K., Robinson R., Thoennessen M. Discovery of chromium, manganese, nickel, and copper isotopes. Atomic Data and Nuclear Data Tables, 2012, vol. 98, no. 2, pp. 356—372. DOI: 10.1016/j.adt.2011.11.002
42. Gresits I., Tolgyesi S. Determination of soft X−ray emitting isotopes in radioactive liquid wastes of nuclear power plants. J. Radioanalytical and Nuclear Chemistry, 2003., vol. 258, no. 1, pp. 107—112. DOI: 10.1023/A:1026214310645
43. Holm E., Rots P., Skwarzec B. Radioanalytical studies of fallout 63Ni. International Journal of Radiation Applications and Instrumentation. Pt A. Applied Radiation and Isotopes, 1992, vol. 43, no. 1−2, pp. 371—376. DOI: 10.1016/0883-2889(92)90107-P
44. Colle R., Zimmerman B. E., Cassette P., Laureano−Perez L. 63Ni, its half−life and standardization: Revisited. Applied Radiation and Isotopes, 2008, vol. 66, no. 1, pp. 60—68. DOI: 10.1016/j.apradiso.2007.07.017
45. Gaitskell R. J., Angrave L. C., Booth N. E., Hahn A. D., Swift A. M. A measurement of the beta spectrum of 63Ni using a new type of calorimetric cryogenic detector. Physics Letters B, 1996, vol. 370, no. 1–2, pp. 163—166. DOI: 10.1016/0370-2693(96)00084-6
46. Angrave L. C., Booth N. E., Gaitskell R. J., Salmon G. L. Measurement of the atomic exchange effect in nuclear β decay. Phys. Rev. Lett., 1998, vol. 80, no. 8, pp. 1610—1613. DOI: 10.1103/PhysRev-Lett.80.1610
47. Coursey B. M., Lucas L. L., Grau Malonda A., Garcia− Torano E. The standardization of plutonium−241 and nickel− 63. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, vol. 279, no. 3, pp. 603—610. DOI: 10.1016/0168-9002(89)91310-7
48. Le−Bret C., Loidl M., Rodrigues M., Mougeot X., Bouchard J. Study of the influence of the source quality on the determination of the shape factor of beta spectra. J. Low Temperature Physics, 2012, vol. 167, no. 5, pp. 985—990. DOI: 10.1007/s10909-012-0607-6
49. Sims G. H. E., Juhnke D. G. The beta self−absorption of Ni63 as metallic nickel. International Journal of Applied Radiation and Isotopes, 1967, vol. 18, no. 11, pp. 727—728. DOI: 10.1016/0020-708X(67)90034-8
50. Gelsema W. J., Donk L., v. Enckevort J. H. T. F. P., Blijleven H. A. The self−absorption of the beta−radiation of 63Ni in metallic nickel sources. J. Chemical Education, 1969, vol. 46, no. 8, pp. 528—530. DOI: 10.1021/ed046p528
51. Barnes I. L., Garfinkel S. B., Mann W. B. Nickel−63: standardization, half−life and neutron−capture cross−section. The International Journal of Applied Radiation and Isotopes, 1971, vol. 22, no. 12, pp. 777—781. DOI: 10.1016/0020-708X(71)90143-8
52. Sosnin L. J., Suvorov I. A., Tcheltsov A. N., Rogozev B. I. Production of 63Ni of high specific activity. Nuclear Instruments and Methods in Physics Research A, 1993, vol. 334, no. 1, pp. 43—44. DOI: 10.1016/0168-9002(93)90526-N
53. Numajiri M., Oki Y., Suzuki T., Miura T., Taira M., Kanda Yu., Kondo K. Estimation of nickel−63 in steel and copper activated at high− energy accelerator facilities. Applied Radiation and Isotopes, 1994, vol. 45, no. 4, pp. 509—514. DOI: 10.1016/0969-8043(94)90116-3
54. Pustovalov A. A., Gusev V. V., Zadde V. V., Petrenko N. S., Tsvetkov L. A., Tikhomirov A. V. 63Ni−based β− electric current source. Atomic Energy, 2007, vol. 103, no. 6, pp. 353—356. DOI: 10.1007/s10512−007−0151−7
55. Parker A. M., Thoennessen M. Discovery of rubidium, strontium, molybdenum, and rhodium isotopes. Atomic Data and Nuclear Data Tables, 2012, vol. 98, no. 4, pp. 812—831. DOI: 10.1016/j.adt.2012.06.001
56. Nystrom A., Thoennessen M. Discovery of yttrium, zirconium, niobium, technetium, and ruthenium isotopes. Atomic Data and Nuclear Data Tables, 2012, vol. 98, no. 2, pp. 95—119. DOI: 10.1016/j.adt.2011.12.002
57. Horwitz E. P., Dietz M. L., Fisher D. E. SREX: A new process for the extraction and recovery of strontium from acidic nuclear waste streams . Solvent Extraction and Ion Exchange, 1991, vol. 9, no.1, pp. 1—25. DOI: 10.1080/07366299108918039
58. Loferski J. J., Rappaport P. Radiation damage in Ge and Si detected by carrier lifetime changes: Damage thresholds. Physical Review, 1958, vol. 111, no. 2, pp. 432—439.
59. Flicker H., Loferski J. J., Elleman T. S. Construction of a promethium−147 atomic battery. IEEE Transactions on Electron Devices, 1964, vol. 11, no. 1, pp. 2—8. DOI: 10.1109/T-ED.1964.15271
60. Manjunatha H.C, Rudraswamy B. External bremsstrahlung of 90Sr−90Y, 147Pm and 204Tl in detector compounds. Radiation Physics and Chemistry, 2013, vol. 85, pp. 95—101. DOI: 10.1016/j.radphyschem.2012.12.022
61. May E, Thoennessen M. Discovery of cesium, lanthanum, praseodymium nd promethium isotopes. Atomic Data and Nuclear Data Tables, 2012, vol. 98, no. 5, pp. 960—982. DOI: 10.1016/j.adt.2011.09.005
62. Reader J., Davis S. P. Promethium 147 hyperfine structure under high resolution. Journal of the Optical Society of America, 1963, vol. 53, no. 4, pp. 431—435. DOI: 10.1364/JOSA.53.000431
63. Gorshkov V. K., Ivanov R. N., Kukabadze G. M., Reformatsky I. A. 235U Fission product yields in the rare earth region. Journal of Nuclear Energy, 1958, vol. 8, no. 1–3, pp. 69—73. DOI: 10.1016/0891-3919(58)90010-X
64. Lee C.−S., Wang Y.−M., Cheng W.−L., Ting G. Chemical study on the separation and purification of promethium−147. Journal of Radioanalytical and Nuclear Chemistry, 1989, vol. 130, no. 1, pp. 21—37. DOI: 10.1007/BF02037697
65. Yoshida M., Sumiya S., Watanabe H., Tobita K. A rapid separation method for determination of promethium−147 and samarium−151 in environmental samples with high performance liquid chromatography. Journal of Radioanalytical and Nuclear Chemistry, 1995., vol. 197, no. 2, pp. 219—227. DOI: 10.1007/BF02036001
Review
For citations:
Bykov A.S., Malinkovich M.D., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Ksenich S.V., Zhukov R.N., Temirov A.A., Chichkov M.V., Polisan A.A., Parkhomenko Yu.N. Radioactive isotopes betavoltaic generator technology. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(4):221-234. (In Russ.) https://doi.org/10.17073/1609-3577-2016-4-221-234