Mathematical plastic flow modeling for equal–channel angular pressing of bismuth chalcogenide base solid solution
https://doi.org/10.17073/1609-3577-2016-4-241-248
Abstract
In this work, mathematical modeling was used to optimize the geometry of the composite mold for developing the technology of equal−channel angular pressing with three channels for thermoelectric materials. To obtain the maximum degree of deformation in this work, we used a three−channel scheme. Taking into consideration the material characteristics (low resistance to tensile stresses), we proposed a tapering profile (along the length) of the third channel. To analyze the plastic flow in the proposed scheme of equal−channel angular pressing with three channels, we performed mathematical modeling of plastic flow, stress and deformation rates along the rod, deformation homogeneity along the cross−section and absence of stagnant zones in the extruder. The methodical approach is based on the combined use of the elastic and plastic solid state approximations according to the fundamentals of the elasticity and plasticity theory. Critical points are identified having the maximum stored energy accumulation without discontinuity of the material. Calculation of the flow velocity in planes perpendicular and parallel to the deformation axis showed a slight difference in the flow rate of the material for the section plane parallel to the deformation axis. This produces a bend with a large curvature radius but does not cause cracking of the material. Calculation of deformations along the flow axis allowed us to detect deformation inhomogeneity. This resulted in the appearance of small tensile stresses in the longitudinal section of the third channel. We show that the plastic deformation inhomogeneity revealed by modeling can be eliminated by using an equipment design with a greater output channel length. Mathematical modeling shows the suitability of the suggested unconventional design of equal−channel angular pressing equipment for bismuth chalcogenide base solid solutions.
Keywords
About the Authors
D. I. BogomolovRussian Federation
Denis I. Bogomolov— Cand. Sci. (Eng.), Assistant MISiS, Leading Specialist R&D Ferrotec Nord Corp.
4 Leninsky Prospekt, Moscow 119049; Peschanyi Kar’er Str., Moscow 109383.
V. T. Bublik
Russian Federation
Vladimir T. Bublik — Professor, Dr. Sci. (Phys.−Math.).
4 Leninsky Prospekt, Moscow 119049.
M. V. Mezhennii
Russian Federation
Mikhail V. Mezhennyi — Head of Laboratory.
53 Shcherbakovskaya Str., Moscow 105187.
A. I. Prostomolotov
Russian Federation
Anatoly I. Prostomolotov — Dr. Sci. (Eng.), Leading Researcher.
101–1 Prospekt Vernadskogo, Moscow 119526.
N. Yu. Tabachkova
Russian Federation
Natalia Yu. Tabachkova — Associate Professor, Cand. Sci. (Phys.−Math.).
4 Leninsky Prospekt, Moscow 119049.
References
1. Zebarjadi M., Esfarjani K., Dresselhaus M. S., Ren Z. F., Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci., 2012, vol. 5, no. 1, pp. 5147—5162. DOI: 10.1039/C1EE02497C
2. Lan Y. C., Minnich A. J., Chen G., Ren Z. Enhancement of thermoelectric figure−of−merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010, vol. 20, no. 3, pp. 357—376. DOI: 10.1002/adfm.200901512
3. Martín−González M., Caballero−Calero O., Díaz−Chao P. Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renewable and Sustainable Energy Reviews, 2013, vol. 24, pp. 288—305. DOI: 10.1016/j.rser.2013.03.008
4. Snyder G. J., Toberer E. S. Complex thermoelectric materials. Nature materials, 2008, vol. 7, pp. 105—114. DOI: 10.1038/nmat2090
5. Lim C. H., Kim K. T., Kim Y. H., Lee C. H., Lee C. H. Equal channel angular extrued Bi0.5Sb1.5Te3 thermoelectric compound. Materials Transactions, 2008, vol. 49, no. 4, pp. 889—891. DOI: 10.2320/matertrans.MEP2007297
6. Fan X. A., Yang J. Y., Zhu W., Bao S. Q., Duan X. K., Xiao C. J., Li K. Preferential orientation and thermoelectric properties of p−type Bi0.4Sb1.6Te3 system alloys by mechanical alloying and equal channel angular extrusion. J. Alloys and Compounds, 2008, vol. 461, no. 1–2, pp. 9—13. DOI: 10.1016/j.jallcom.2007.07.007
7. Im J.−T., Hartwig K. T., Sharp J. Microstructural refinement of cast p−type Bi2Te3—Sb2Te3 by equal channel angular extrusion. Acta Materialia, 2004, vol. 52, no. 1, pp. 49—55. DOI: 10.1016/j.actamat.2003.08.025
8. Sun Z. M., Hashimoto H., Keawprak N., Ma A. B., Li L. F., Barsoum M. W. Effect of rotary−die equal channel angular pressing on the thermoelectric properties of a (Bi,Sb)2Te3 alloy. J. Mater. Res., 2005, vol. 20, no. 4, pp. 895—903. DOI: 10.1557/JMR.2005.0120
9. Ceresara S., Fanciulli C., Passaretti F., Vasilevskiy D. Influence of processing parameters on the thermoelectric properties of (Bi0.2Sb0.8)2Te3 sintered by ECAE. AIP Conf. Proc., 2012, vol. 1449, no. 1, pp. 111—116. DOI: 10.1007/s11664-015-4110-0
10. Ceresara S., Giunchi G., Ripamonti G. Warm ECAE: a novel deformation process for optimising mechanical and termoelectric properties of chalcogenides. 25th International Conference on Thermoelectrics, 2006. P. 231.
11. Fan X. A., Yang J. Y., Zhu W., Bao S. Q, Duan X. K., Xiao C. J., Li K. Preferential orientation and thermoelectric properties of n−type Bi2Te2.85Se0.15 alloys by mechanical alloying and equal channel angular extrusion. J. Physics D: Appl. Phys., 2007, vol. 18, no. 18, pp. 5727—5732. DOI: 10.1088/0022−3727/40/18/033
12. Srinivasan R. Microstructure and crystallographic texture evolution during hot deformation of the n−type bismuth telluride Bi2Se0.3Te2.7. Materials Science and Technology, 2013, vol. 29, no. 6, pp. 733—737.
13. Yang J., Chen R., Fan X., Zhu W., Bao S., Duan X. Microstructure control and thermoelectric properties improvement to n−type bismuth telluride based materials by hot extrusion. J. Alloys and Compounds, 2007, vol. 429, no. 1–2, pp. 156—162. DOI: 10.1016/j.jallcom.2006.04.030.
14. Lavrentyev M. G., Osvensky V. B., Mezhennyi M. V., Prostomolotov A. I., Bublik V. T., Tabachkova N. Yu. Experiment−calculated study on structure formation of thermoelectric material based on solid solutions of bismuth and antimony chalcogenides prepared by hot extrusion method. Journal of Thermoelectricity, 2012, no. 4, pp. 33—38.
15. Mezhenniy M. V., Lavrentyev M. G., Osvenskiy V. B., Voronov M. V., Prostomolotov A. I. Simulation of plastic state of thermoelectric bismuth telluride−based material during hot extrusion. Vestnik tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 2013, vol. 18, no. 4–2, pp. 1976—1977. (In Russ.)
16. Eger J. K. Uprugost’, prochnost’ i tekuchest’ [Elasticity Strength and Fluidity]. Moscow: Mashgiz, 1961. 170 p. (In Russ.)
17. Horrobin D. J., Nedderman R. M. Die entry pressure drops in paste extrusion. Chemical Engineering Science, 1998, vol. 53, no. 18, pp. 3215—3225. DOI: 10.1016/S0009−2509(98)00105−5
18. Tiernan P., Hillery M. T., Graganescu B., Gheorghe M. Modelling of cold extrusion with experimental verification. J. Materials Processing Technology, 2005, vol. 168, no. 2, pp. 360—366. DOI: 10.1016/j.jmatprotec.2005.02.249
Review
For citations:
Bogomolov D.I., Bublik V.T., Mezhennii M.V., Prostomolotov A.I., Tabachkova N.Yu. Mathematical plastic flow modeling for equal–channel angular pressing of bismuth chalcogenide base solid solution. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(4):241-248. (In Russ.) https://doi.org/10.17073/1609-3577-2016-4-241-248