Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Mathematical plastic flow modeling for equal–channel angular pressing of bismuth chalcogenide base solid solution

https://doi.org/10.17073/1609-3577-2016-4-241-248

Abstract

In this work, mathematical modeling was used to optimize the geometry of the composite mold for developing the technology of equal−channel angular pressing with three channels for thermoelectric materials. To obtain the maximum degree of deformation in this work, we used a three−channel scheme. Taking into consideration the material characteristics (low resistance to tensile  stresses), we proposed a tapering profile (along  the length)  of the third channel. To analyze the  plastic  flow in the  proposed scheme of equal−channel angular pressing with three channels, we performed mathematical modeling of plastic flow, stress and deformation rates along the rod, deformation homogeneity along the cross−section and absence of stagnant zones in the extruder. The methodical approach is based on the combined use  of the elastic and plastic  solid state approximations according to the fundamentals of the elasticity and plasticity theory. Critical points are identified having the maximum stored energy accumulation without discontinuity of the material. Calculation of the flow velocity in planes perpendicular and  parallel  to the  deformation axis showed a slight difference in the flow rate of the material  for the section plane parallel to the deformation axis. This produces a bend with a large  curvature radius  but  does not  cause cracking of the  material. Calculation of deformations along  the  flow axis allowed  us to detect deformation inhomogeneity. This resulted in the  appearance of small  tensile stresses in the longitudinal  section of the third channel. We show that the plastic  deformation inhomogeneity revealed by modeling can be eliminated by using an equipment design with a greater output channel length. Mathematical modeling shows the suitability of the suggested unconventional design of equal−channel angular pressing equipment for bismuth chalcogenide base solid solutions.

About the Authors

D. I. Bogomolov
National University of Science and Technology MISiS; Ferrotec Nord Corp.
Russian Federation

Denis I. Bogomolov— Cand.  Sci. (Eng.),  Assistant MISiS, Leading Specialist R&D Ferrotec Nord Corp.

4 Leninsky Prospekt, Moscow 119049; Peschanyi Kar’er Str., Moscow 109383.



V. T. Bublik
National University of Science and Technology MISiS
Russian Federation

Vladimir T. Bublik — Professor, Dr. Sci.  (Phys.−Math.).

4 Leninsky Prospekt, Moscow 119049.



M. V. Mezhennii
JSC Optron
Russian Federation

Mikhail V. Mezhennyi — Head of Laboratory.

53 Shcherbakovskaya Str., Moscow 105187.

 



A. I. Prostomolotov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation

Anatoly I. Prostomolotov — Dr. Sci. (Eng.),  Leading  Researcher.

101–1 Prospekt Vernadskogo, Moscow 119526.



N. Yu. Tabachkova
National University of Science and Technology MISiS
Russian Federation

Natalia Yu. Tabachkova — Associate Professor, Cand. Sci. (Phys.−Math.). 

4 Leninsky Prospekt, Moscow 119049.



References

1. Zebarjadi M., Esfarjani K., Dresselhaus M. S., Ren Z. F., Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci., 2012, vol. 5, no. 1, pp. 5147—5162. DOI: 10.1039/C1EE02497C

2. Lan Y. C., Minnich A. J., Chen G., Ren Z. Enhancement of thermoelectric figure−of−merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010, vol. 20, no. 3, pp. 357—376. DOI: 10.1002/adfm.200901512

3. Martín−González M., Caballero−Calero O., Díaz−Chao P. Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renewable and Sustainable Energy Reviews, 2013, vol. 24, pp. 288—305. DOI: 10.1016/j.rser.2013.03.008

4. Snyder G. J., Toberer E. S. Complex thermoelectric materials. Nature materials, 2008, vol. 7, pp. 105—114. DOI: 10.1038/nmat2090

5. Lim C. H., Kim K. T., Kim Y. H., Lee C. H., Lee C. H. Equal channel angular extrued Bi0.5Sb1.5Te3 thermoelectric compound. Materials Transactions, 2008, vol. 49, no. 4, pp. 889—891. DOI: 10.2320/matertrans.MEP2007297

6. Fan X. A., Yang J. Y., Zhu W., Bao S. Q., Duan X. K., Xiao C. J., Li K. Preferential orientation and thermoelectric properties of p−type Bi0.4Sb1.6Te3 system alloys by mechanical alloying and equal channel angular extrusion. J. Alloys and Compounds, 2008, vol. 461, no. 1–2, pp. 9—13. DOI: 10.1016/j.jallcom.2007.07.007

7. Im J.−T., Hartwig K. T., Sharp J. Microstructural refinement of cast p−type Bi2Te3—Sb2Te3 by equal channel angular extrusion. Acta Materialia, 2004, vol. 52, no. 1, pp. 49—55. DOI: 10.1016/j.actamat.2003.08.025

8. Sun Z. M., Hashimoto H., Keawprak N., Ma A. B., Li L. F., Barsoum M. W. Effect of rotary−die equal channel angular pressing on the thermoelectric properties of a (Bi,Sb)2Te3 alloy. J. Mater. Res., 2005, vol. 20, no. 4, pp. 895—903. DOI: 10.1557/JMR.2005.0120

9. Ceresara S., Fanciulli C., Passaretti F., Vasilevskiy D. Influence of processing parameters on the thermoelectric properties of (Bi0.2Sb0.8)2Te3 sintered by ECAE. AIP Conf. Proc., 2012, vol. 1449, no. 1, pp. 111—116. DOI: 10.1007/s11664-015-4110-0

10. Ceresara S., Giunchi G., Ripamonti G. Warm ECAE: a novel deformation process for optimising mechanical and termoelectric properties of chalcogenides. 25th International Conference on Thermoelectrics, 2006. P. 231.

11. Fan X. A., Yang J. Y., Zhu W., Bao S. Q, Duan X. K., Xiao C. J., Li K. Preferential orientation and thermoelectric properties of n−type Bi2Te2.85Se0.15 alloys by mechanical alloying and equal channel angular extrusion. J. Physics D: Appl. Phys., 2007, vol. 18, no. 18, pp. 5727—5732. DOI: 10.1088/0022−3727/40/18/033

12. Srinivasan R. Microstructure and crystallographic texture evolution during hot deformation of the n−type bismuth telluride Bi2Se0.3Te2.7. Materials Science and Technology, 2013, vol. 29, no. 6, pp. 733—737.

13. Yang J., Chen R., Fan X., Zhu W., Bao S., Duan X. Microstructure control and thermoelectric properties improvement to n−type bismuth telluride based materials by hot extrusion. J. Alloys and Compounds, 2007, vol. 429, no. 1–2, pp. 156—162. DOI: 10.1016/j.jallcom.2006.04.030.

14. Lavrentyev M. G., Osvensky V. B., Mezhennyi M. V., Prostomolotov A. I., Bublik V. T., Tabachkova N. Yu. Experiment−calculated study on structure formation of thermoelectric material based on solid solutions of bismuth and antimony chalcogenides prepared by hot extrusion method. Journal of Thermoelectricity, 2012, no. 4, pp. 33—38.

15. Mezhenniy M. V., Lavrentyev M. G., Osvenskiy V. B., Voronov M. V., Prostomolotov A. I. Simulation of plastic state of thermoelectric bismuth telluride−based material during hot extrusion. Vestnik tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 2013, vol. 18, no. 4–2, pp. 1976—1977. (In Russ.)

16. Eger J. K. Uprugost’, prochnost’ i tekuchest’ [Elasticity Strength and Fluidity]. Moscow: Mashgiz, 1961. 170 p. (In Russ.)

17. Horrobin D. J., Nedderman R. M. Die entry pressure drops in paste extrusion. Chemical Engineering Science, 1998, vol. 53, no. 18, pp. 3215—3225. DOI: 10.1016/S0009−2509(98)00105−5

18. Tiernan P., Hillery M. T., Graganescu B., Gheorghe M. Modelling of cold extrusion with experimental verification. J. Materials Processing Technology, 2005, vol. 168, no. 2, pp. 360—366. DOI: 10.1016/j.jmatprotec.2005.02.249


Review

For citations:


Bogomolov D.I., Bublik V.T., Mezhennii M.V., Prostomolotov A.I., Tabachkova N.Yu. Mathematical plastic flow modeling for equal–channel angular pressing of bismuth chalcogenide base solid solution. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(4):241-248. (In Russ.) https://doi.org/10.17073/1609-3577-2016-4-241-248

Views: 827


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)