Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Hierarchical structures of functionalized multi–walled carbon nanotubes in aerosil solution

https://doi.org/10.17073/1609-3577-2016-4-254-261

Abstract

The features and  regularities of self−assembly and  self− organization processes in the diffusion−limited conditions (method of drops) of aqueous (deionized water) colloidal solutions of multi−walled carbon nanotubes with aerosil under the influence of constant electric fields with a value varying of direct  current voltage  from 15 to 25 V have been studied. During droplet evaporation in an electric field, the processes of hierarchical structuring have been studied and the formation of linear piecewise with the sizes of 40—120 nm, fractal structures 25—45 nm and  diffusion structures 250 nm from MWCNT — COOH + aerosil  + H2ODI  have  been observed. These structures have  been analyzed by methods of confocal microscopy, X−ray powder diffraction, Raman scattering, atomic force microscopy, FT−IR spectroscopy and scanning electron microscopy. The size of micro− and nanostructures in hyperbolic dependence of d = 1/U in the  approximation d → 2R, and their growth rate  increases as U2 have been observed. Intensive ultrasonic dispersion proves to produce a centrally−axial arrangement located SWCNT after ultrasonic dispersing of functionalized MWCNT — COOH + aerosil  + H2ODI colloidal solution, as confirmed by excitation of Raman lines in the low−wavelength region, the so−called breathing mode, resulting in the existence of mixed types sp2−hybridization with π− and σ−carbon bonds, as well as metallic and semiconducting conductivity, which indicates great practical importance of this structuring for the development of nanoelectronics.

 

About the Authors

A. P. Kuzmenko
Southwest State University
Russian Federation

Alexander P. Kuzmenko — Dr. Sci.  (Phys.−Math.), Professor of Department of Engineering Physics and Nanotechnology.

94 50 let Oktyabrya  Str., Kursk 305040.



Thet Phyo Naing
Southwest State University
Russian Federation

Thet Phyo Naing — PostGraduated Student.

94 50 let Oktyabrya  Str., Kursk 305040.



A. E. Kuzko
Southwest State University
Russian Federation

Andrey E. Kuzko — Cand. Sci. (Phys.−Math.), Associate Professor, Chief Department of Engineering Physics and Nanotechnology.

94 50 let Oktyabrya  Str., Kursk 305040.



A. V. Kochura
Southwest State University
Russian Federation

Alexey V. Kochura — Ph. D., A. P., Vice−Director of the Regional  center of nanotechnology.

94 50 let Oktyabrya  Str., Kursk 305040.



Myo Min Than
Southwest State University
Russian Federation

Myo Min Than — Researcher.

94 50 let Oktyabrya  Str., Kursk 305040.



Nay Win Aung
Southwest State University
Russian Federation

Nay Win Aung — Student.

94 50 let Oktyabrya  Str., Kursk 305040.



References

1. Lehman J. H., Terrones M., Mansfield E ., Hurst K. E ., Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011, vol. 49, no. 8, pp. 2581—2602. DOI: 10.1016/j.carbon.2011.03.028

2. Prasek J., Drbohlavova J., Chomoucka J., Hubalek J., Jasek O., Adam V., Kizek R. Methods for carbon nanotubes synthesis — review. J. Mater. Chem., 2011, vol. 21, pp. 15872—15884. DOI: 10.1039/C1JM12254A

3. De Volder M. F. L., Tawfick S. H., Baughman R. H., Hart A. J. Carbon nanotubes: Present and future commercial applications. Science, 2013, vol. 339, no. 6119, pp. 535—539. DOI: 10.1126/science.1222453

4. Sameera I., Bhatia R., Prasad V., Menon R. High emission currents and low threshold fields in multi−wall carbon nanotubepolymer composites in the vertical configuration. J. Appl. Phys., 2012, vol. 111, no. 4, p. 044307(5). DOI: 10.1063/1.3685754

5. Yuchi Che, Haitian Chen, Hui Gui, Jia Liu, Bilu Liu and Chongwu Zhou. Review of carbon nanotube nanoelectronics and macroelectronics. Semicond. Sci. Technol., 2014, vol. 29, no. 7, p. 073001(17). DOI: 10.1088/0268-1242/29/7/073001

6. Ageev O. A., Blinov Y. F., Il’ina M. V., Il’in O. I., Smirnov V. A., Tsukanova O. G. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic−force microscopy. Phys. Solid State, 2016, vol. 58, no. 2, pp. 309—314. DOI: 10.1134/S1063783416020037

7. Sergeev G. B. Dimensional effects in nanochemistry. Rossiiskii khimicheskii zhurnal = Russian Journal of General Chemistry, 2002, vol. XLVI, no. 5, pp. 22—29. (In Russ.)

8. Vorob’eva A. I. Equipment and techniques for carbon nanotube research. Phys. Usp., 2010, vol. 53, no. 3, pp. 257—277. DOI: 10.3367/UFNe.0180.201003d.0265

9. Reinert L., Zeiger M., Suárez S., Presser V., Mücklich F. Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Adv., 2015, vol. 5, no. 115, pp. 95149—95159. DOI: 10.1039/c5ra14310a

10. Van Thu Le, Cao Long Ngo, Quoc Trung Le, Trinh Tung Ngo, Duc Nghia Nguyen, Minh Thanh Vu. Surface modification and functionalization of carbon nanotube with some organic compounds. Adv. Nat. Sci: Nanosci. Nanotechnol., 2013, vol. 4, no. 3, p. 035017 (5pp). DOI: 10.1088/2043-6262/4/3/035017

11. Kuz’menko A. P., Aung Ch. N., Rodionov V. V. 3D fractalization over natural colloidal microinclusions. Tech. Phys., 2015, vol. 60, no. 6. pp. 903—910. DOI: 10.1134/S1063784215060146

12. Kuzmenko A. P., Thet Phyo Naing, Myo Min Than, Dovolamislov M. B., Chan Nyein Aung. Process of self−organization in carbon containing colloidal solution. Izvestiya Yugo−Zapadnogo gosudarstvennogo universiteta. Seriya tekhnika i tekhnologii = Proceedings of the Southwest State University. Technics and Technologies, 2015, no. 3, pp. 38—50. (In Russ.)

13. Kuzmenko A. P., Thet Phyo Naing, Myo Min Than, Chan Nyein Aung, Dobromyslov M. B., Emelyanov S. G., Chervyakov L. M. Self−assembly and self−organization processes of carbon nanotubes in the colloidal systems. J. Nano− Electron. Phys., 2015, vol. 7, no. 4, p. 04014(3pp).

14. Velev O. D., Bhatt K. H. On−chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter., 2006, vol. 2, no. 9, pp. 738—750. DOI: 10.1039/b605052b

15. Krupke R., Hennrich F., von Löhneysen H., Kappes M. M. Separation of metallic from semiconducting singel−walled carbon nanotubes. Science, 2003, vol. 301, no. 5631, pp. 344—347. DOI: 10.1126/science.1086534

16. Ma Shao−Jie, Guo Wan−Lin. Mechanism of carbon nanotubes aligning along applied electric field. Chinese Phys. Lett., 2008, vol. 25, no. 1, pp. 270—273. DOI: 10.1088/0256−307X/25/1/073

17. Andreeva L. V., Koshkin A. V., Lebedev−Stepanov P. V., Petrov A. N., Alfimov M. V. Driving forces of the solute self−organization in an evaporating liquid microdroplet. Colloids and Surfaces A: Physicochem. Eng. Aspects., 2007, vol. 300, no. 3, pp. 300—306. DOI: 10.1016/j.colsurfa.2007.02.001

18. Lu−Chang Qin, Xinluo Zhao, Kaori Hirahara, Yoshiyuki Miyamoto, Yoshinori Ando, Sumio Iijima. The smallest carbon nanotubes. Nature, 2000, vol. 408, no. 6808, p. 50. DOI: 10.1038/35040699

19. Dresselhaus M. S., Jorio A., Hofmann M., Dresselhaus G., Saito R. Perspectives on carbon nanotubes and grapheme Raman spectroscopy. Nano Lett., 2010, vol. 10, no. 3, pp. 751—758. DOI: 10.1021/nl904286r

20. Zhao X., Ando Y., Qin L.−C., Kataura H., Maniwa Y., Saito R. Characteristic Raman spectra of multiwalled carbon nanotubes. Physica B: Condensed Matter, 2002, vol. 323, no. 1, pp. 265—266. DOI. 10.1016/S0921-4526(02)00986-9

21. Thomsen C., Reich S. Raman Scattering in Carbon Nanotubes. In: Light Scattering in Solid IX. Topics in Applied Physics, vol. 108. Berlin; Heidelberg: Springer, 2006. Pp. 115—234. DOI: 10.1007/978-3-540-34436-0_3

22. Maultzsch J., Telg H., Reich S., Thomsen C. Radial breathing mode of single−walled carbon nanotubes: Optical transition energies and chiral−index assignment. Phys. Rev. B., 2005, vol. 72, no. 20, pp. 205438(1)—205438(16). DOI: 10.1103/PhysRevB.72.205438


Review

For citations:


Kuzmenko A.P., Naing T.P., Kuzko A.E., Kochura A.V., Than M.M., Aung N.W. Hierarchical structures of functionalized multi–walled carbon nanotubes in aerosil solution. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(4):254-261. (In Russ.) https://doi.org/10.17073/1609-3577-2016-4-254-261

Views: 970


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)