Hierarchical structures of functionalized multi–walled carbon nanotubes in aerosil solution
https://doi.org/10.17073/1609-3577-2016-4-254-261
Abstract
The features and regularities of self−assembly and self− organization processes in the diffusion−limited conditions (method of drops) of aqueous (deionized water) colloidal solutions of multi−walled carbon nanotubes with aerosil under the influence of constant electric fields with a value varying of direct current voltage from 15 to 25 V have been studied. During droplet evaporation in an electric field, the processes of hierarchical structuring have been studied and the formation of linear piecewise with the sizes of 40—120 nm, fractal structures 25—45 nm and diffusion structures 250 nm from MWCNT — COOH + aerosil + H2ODI have been observed. These structures have been analyzed by methods of confocal microscopy, X−ray powder diffraction, Raman scattering, atomic force microscopy, FT−IR spectroscopy and scanning electron microscopy. The size of micro− and nanostructures in hyperbolic dependence of d = 1/U in the approximation d → 2R, and their growth rate increases as U2 have been observed. Intensive ultrasonic dispersion proves to produce a centrally−axial arrangement located SWCNT after ultrasonic dispersing of functionalized MWCNT — COOH + aerosil + H2ODI colloidal solution, as confirmed by excitation of Raman lines in the low−wavelength region, the so−called breathing mode, resulting in the existence of mixed types sp2−hybridization with π− and σ−carbon bonds, as well as metallic and semiconducting conductivity, which indicates great practical importance of this structuring for the development of nanoelectronics.
Keywords
About the Authors
A. P. KuzmenkoRussian Federation
Alexander P. Kuzmenko — Dr. Sci. (Phys.−Math.), Professor of Department of Engineering Physics and Nanotechnology.
94 50 let Oktyabrya Str., Kursk 305040.
Thet Phyo Naing
Russian Federation
Thet Phyo Naing — PostGraduated Student.
94 50 let Oktyabrya Str., Kursk 305040.
A. E. Kuzko
Russian Federation
Andrey E. Kuzko — Cand. Sci. (Phys.−Math.), Associate Professor, Chief Department of Engineering Physics and Nanotechnology.
94 50 let Oktyabrya Str., Kursk 305040.
A. V. Kochura
Russian Federation
Alexey V. Kochura — Ph. D., A. P., Vice−Director of the Regional center of nanotechnology.
94 50 let Oktyabrya Str., Kursk 305040.
Myo Min Than
Russian Federation
Myo Min Than — Researcher.
94 50 let Oktyabrya Str., Kursk 305040.
Nay Win Aung
Russian Federation
Nay Win Aung — Student.
94 50 let Oktyabrya Str., Kursk 305040.
References
1. Lehman J. H., Terrones M., Mansfield E ., Hurst K. E ., Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011, vol. 49, no. 8, pp. 2581—2602. DOI: 10.1016/j.carbon.2011.03.028
2. Prasek J., Drbohlavova J., Chomoucka J., Hubalek J., Jasek O., Adam V., Kizek R. Methods for carbon nanotubes synthesis — review. J. Mater. Chem., 2011, vol. 21, pp. 15872—15884. DOI: 10.1039/C1JM12254A
3. De Volder M. F. L., Tawfick S. H., Baughman R. H., Hart A. J. Carbon nanotubes: Present and future commercial applications. Science, 2013, vol. 339, no. 6119, pp. 535—539. DOI: 10.1126/science.1222453
4. Sameera I., Bhatia R., Prasad V., Menon R. High emission currents and low threshold fields in multi−wall carbon nanotubepolymer composites in the vertical configuration. J. Appl. Phys., 2012, vol. 111, no. 4, p. 044307(5). DOI: 10.1063/1.3685754
5. Yuchi Che, Haitian Chen, Hui Gui, Jia Liu, Bilu Liu and Chongwu Zhou. Review of carbon nanotube nanoelectronics and macroelectronics. Semicond. Sci. Technol., 2014, vol. 29, no. 7, p. 073001(17). DOI: 10.1088/0268-1242/29/7/073001
6. Ageev O. A., Blinov Y. F., Il’ina M. V., Il’in O. I., Smirnov V. A., Tsukanova O. G. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic−force microscopy. Phys. Solid State, 2016, vol. 58, no. 2, pp. 309—314. DOI: 10.1134/S1063783416020037
7. Sergeev G. B. Dimensional effects in nanochemistry. Rossiiskii khimicheskii zhurnal = Russian Journal of General Chemistry, 2002, vol. XLVI, no. 5, pp. 22—29. (In Russ.)
8. Vorob’eva A. I. Equipment and techniques for carbon nanotube research. Phys. Usp., 2010, vol. 53, no. 3, pp. 257—277. DOI: 10.3367/UFNe.0180.201003d.0265
9. Reinert L., Zeiger M., Suárez S., Presser V., Mücklich F. Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Adv., 2015, vol. 5, no. 115, pp. 95149—95159. DOI: 10.1039/c5ra14310a
10. Van Thu Le, Cao Long Ngo, Quoc Trung Le, Trinh Tung Ngo, Duc Nghia Nguyen, Minh Thanh Vu. Surface modification and functionalization of carbon nanotube with some organic compounds. Adv. Nat. Sci: Nanosci. Nanotechnol., 2013, vol. 4, no. 3, p. 035017 (5pp). DOI: 10.1088/2043-6262/4/3/035017
11. Kuz’menko A. P., Aung Ch. N., Rodionov V. V. 3D fractalization over natural colloidal microinclusions. Tech. Phys., 2015, vol. 60, no. 6. pp. 903—910. DOI: 10.1134/S1063784215060146
12. Kuzmenko A. P., Thet Phyo Naing, Myo Min Than, Dovolamislov M. B., Chan Nyein Aung. Process of self−organization in carbon containing colloidal solution. Izvestiya Yugo−Zapadnogo gosudarstvennogo universiteta. Seriya tekhnika i tekhnologii = Proceedings of the Southwest State University. Technics and Technologies, 2015, no. 3, pp. 38—50. (In Russ.)
13. Kuzmenko A. P., Thet Phyo Naing, Myo Min Than, Chan Nyein Aung, Dobromyslov M. B., Emelyanov S. G., Chervyakov L. M. Self−assembly and self−organization processes of carbon nanotubes in the colloidal systems. J. Nano− Electron. Phys., 2015, vol. 7, no. 4, p. 04014(3pp).
14. Velev O. D., Bhatt K. H. On−chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter., 2006, vol. 2, no. 9, pp. 738—750. DOI: 10.1039/b605052b
15. Krupke R., Hennrich F., von Löhneysen H., Kappes M. M. Separation of metallic from semiconducting singel−walled carbon nanotubes. Science, 2003, vol. 301, no. 5631, pp. 344—347. DOI: 10.1126/science.1086534
16. Ma Shao−Jie, Guo Wan−Lin. Mechanism of carbon nanotubes aligning along applied electric field. Chinese Phys. Lett., 2008, vol. 25, no. 1, pp. 270—273. DOI: 10.1088/0256−307X/25/1/073
17. Andreeva L. V., Koshkin A. V., Lebedev−Stepanov P. V., Petrov A. N., Alfimov M. V. Driving forces of the solute self−organization in an evaporating liquid microdroplet. Colloids and Surfaces A: Physicochem. Eng. Aspects., 2007, vol. 300, no. 3, pp. 300—306. DOI: 10.1016/j.colsurfa.2007.02.001
18. Lu−Chang Qin, Xinluo Zhao, Kaori Hirahara, Yoshiyuki Miyamoto, Yoshinori Ando, Sumio Iijima. The smallest carbon nanotubes. Nature, 2000, vol. 408, no. 6808, p. 50. DOI: 10.1038/35040699
19. Dresselhaus M. S., Jorio A., Hofmann M., Dresselhaus G., Saito R. Perspectives on carbon nanotubes and grapheme Raman spectroscopy. Nano Lett., 2010, vol. 10, no. 3, pp. 751—758. DOI: 10.1021/nl904286r
20. Zhao X., Ando Y., Qin L.−C., Kataura H., Maniwa Y., Saito R. Characteristic Raman spectra of multiwalled carbon nanotubes. Physica B: Condensed Matter, 2002, vol. 323, no. 1, pp. 265—266. DOI. 10.1016/S0921-4526(02)00986-9
21. Thomsen C., Reich S. Raman Scattering in Carbon Nanotubes. In: Light Scattering in Solid IX. Topics in Applied Physics, vol. 108. Berlin; Heidelberg: Springer, 2006. Pp. 115—234. DOI: 10.1007/978-3-540-34436-0_3
22. Maultzsch J., Telg H., Reich S., Thomsen C. Radial breathing mode of single−walled carbon nanotubes: Optical transition energies and chiral−index assignment. Phys. Rev. B., 2005, vol. 72, no. 20, pp. 205438(1)—205438(16). DOI: 10.1103/PhysRevB.72.205438
Review
For citations:
Kuzmenko A.P., Naing T.P., Kuzko A.E., Kochura A.V., Than M.M., Aung N.W. Hierarchical structures of functionalized multi–walled carbon nanotubes in aerosil solution. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(4):254-261. (In Russ.) https://doi.org/10.17073/1609-3577-2016-4-254-261