Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

The development of the market and the production technology of polycrystalline silicon

https://doi.org/10.17073/1609-3577-2017-2-99-106

Abstract

The article is devoted to the current state and prospects of production development of main material — polycrystalline silicon (polysilicon) which is used in the manufacture of products for micro and power electronics and photovoltaics. The article includes polycrystalline silicon market dynamics analysis. It is noted that the increase in polysilicon output is primarily connected to the growing needs of photovoltaics and the global trend of transition to renewable, alternative energy. It is assumed that the annual increase in the output of polysilicon will reach a level of 10−15 % or more. There are several facts that are important for the intensive development of photovoltaics. They include level of polycrystalline silicon technology and the availability of this material for large−scale production of highly efficient solar cells. According to forecasts, the main technology used in the industry based on «Siemens Process» will remain dominant in the foreseeable period of time. LLC «Kremniytehnoprom» is developing a modern polysilicon production project based on the original designs and modernization of «Siemens Process». It is planned to be created in Russia with the involvement of leading German specialists and enterprises (SPSC GmbH, GEC GmbH). The project provides maximum safety of production, despite the potential risks inherent in technology. First of all it is ensured by guarantees of hardware−technological schemes performance, reliability of the equipment and design solutions in general, as well as by a set of emergency protections. Toxic production waste will be processed into safe substances — targeted products for sale. The created enterprise will ensure the optimization of key indicators for competitive production: the price of polysilicon, production volumes, specific capital investments and current unit costs.

About the Authors

V. V. Mitin
LLC Kremniytehnoprom
Russian Federation
Cand. Sci. (Eng.), Chief Engineer


A. A. Kokh
LLC Kremniytehnoprom
Russian Federation
Cand. Sci. (Eng.), Leading Process Engineer


References

1. Tore Torvund, President & CEO. Swedbank Energy Summit, Oslo, March 16, 2017. http://hugin.info/136555/R/2088247/788237.pdf (accessed: March 15, 2017).

2. Solar Grade Polysilicon. Recsilicon. www.recsilicon.com/ products/solar-grade-polysilicon (accessed: April 25, 2017).

3. Electronic Grade Polysilicon. www.recsilicon.com/products/ electronic−grade−polysilicon. (accessed: March 17, 2017).

4. UN Comtrade. https://comtrade.un.org/ (accessed: March 17, 2017).

5. Global Trends in Renewable Energy Investment 2016. Frankfurt School−UNEP Centre/BNEF. http://fs-unepcentre.org/ publications/global-trends-renewable-energyinvestment-2016 (accessed: March 15, 2017).

6. International Energy Outlook 2016, U.S. Energy Information Administration, 2016.

7. SNEC 2017 — PV Power Expo (Shanghai), 2017. Becquerer Institute. Global costs to installation. PV market Alliance. www. snec.org.cn/website/index.aspx?url=Conference/Login&lang=en (accessed: May 12, 2017).

8. Westermeier Ch. Global Market Outlook, President, Solar Power Europe Intersolar, Munich, 30 May 2017. www.intersolar.de/ en/program/proceedings.html (accessed: May 5, 2017).

9. IRENA (2017), REthinking Energy 2017: Accelerating the global energy transformation. International Renewable Energy Agency, Abu Dhabi. http://www.ourenergypolicy.org/wp-content/ uploads/2017/01/IRENA_REthinking_Energy_2017.pdf (accessed: May 23, 2017).

10. O’Mara R. B., Herring L.P., Handbook of Semiconductor Silicon Technology. Park Ridge (NJ): Noyes, 1990, pp. 5—15.

11. Fal’kevich E. S., Pul’ner E. O., Chervonyi I. F., Shvartsman L. Ya, Yarkin V. N., Salli I. V. Tekhnologiya poluprovodnikovogo kremniya [Technology of Semiconductor Silicon]. Moscow: Metallurgiya, 1992, 408 p. (In Russ.)

12. Elyousfi A. Investment in Polysilicon Production. https:// ru.scribd.com/document/245610342/Alan-Elyousfi-Investment-inPolysilicon-Production (accessed: January 9, 2017)

13. SVP Jon Andre Lokke Copenhagen. http://www.huginonline.no/REC/files/20100108a.pdf (accessed: June 2, 2017).

14. Belov E. P., Lebedev E. N., Grigorash Yu. P., Goryunov A. N., Litvinenko I. N. Monosilan v tekhnologii poluprovodnikovykh materialov [Monosilane in Semiconductor Material Technology]. Moscow: NIITEKhIM, 1989. 65p. (In Russ.)

15. Patent 6103942 A (US). Method of high purity silane preparation. Y. S. Tsuo, E. P. Belov, V. G. Gerlivanov, V. V. Zadde, S. I. Kleschevnikova, N. N. Korneev, E. N. Lebedev, A. B. Pinov, E. A. Ryabenko, D. S. Strebkov, E. A. Chernyshev, 2000.

16. Kiselev A. D. Processes for the production of silicon with a low content of impurities using magnesium−thermal reduction of silicon dioxide in devices of cramped incidence. http://portal.tpu.ru/ portal/pls/portal/!app_ds.ds_view_bknd.download_doc?fileid=987 (In Russ.). (accessed: June 10, 2017).

17. International Technology Roadmap for Photovoltaic, 2015. VDMA Photovoltaic Equipment. http://www.itrpv.net/.cm4all/iproc. php/ITRPV%20Seventh%20Edition%20including%20maturity%20 report%2020161026.pdf?cdp=a (accessed: March 10,2017).

18. Patent 2280010 (RF). Sposob polucheniya trikhlorsilana [Method for producing trichlorosilane]. A. V. Elyutin, Yu. N. Nazarov, A. M. Chapygin, A. A. Kokh, A. A. Arkad’ev, V. V. Apanasenko, 2006. (In Russ.)

19. Patent 011971 (Euras.). Sposob polucheniya polikristallicheskogo kremniya [Method for producing polycrystalline silicon]. A. A. Arkad’ev, A. V. Elyutin, L. S. Ivanov, A. A. Kokh, V. G. Levin, V. V. Mitin, Yu. N. Nazarov, Yu. N. Parkhomenko, V. A. Pekelis, I. Yu. Petrova, T. V. Simonova, A. M. Chapygin, 2009. (In Russ.)

20. Patent 2278076C2 (RF). Ustroistvo gidrirovaniya tetrakhlorida kremniya [Device for hydrogenation of silicon tetrachloride]. L. S. Ivanov, V. G. Levin, V. V. Mitin, D. V. Nazarkin, 2006. (In Russ.)

21. Patent 2274602C1 (RF). Sposob polucheniya trikhlorsilana. MPK: C01B33/107 [Method for producing trichlorosilane]. L. S. Ivanov, V. G. Levin, V. V. Mitin, D. V. Nazarkin, 2006. (In Russ.)

22. Chunduri Sh. K. Detailed product descriptions of Siemens− type CVD reactors. Photon Int., 2013, April, pp. 120—126.

23. Giredmet Ltd. http://giredmet.ru/ru/products/polysilicon/pulisilicontechnology/; http://giredmet.ru/ru/products/polysilicon/polysiliconequipment/ (accessed: June 5, 2017).

24. Patent 2475451C1 (RF). Sposob polucheniya polikristallicheskogo kremniya [Method for producing polycrystalline silicon]. A. B. Pinov, S. A. Muravitskii, T. R. Timerbulatov, P. M. Gavrilov, A. P. Prochankin, M. V. Bolgov, O. G. Voinov, 2013. (In Russ.)

25. Parkhomenko Yu. N., Naumov A. V. When will finished overproduction of polysilicon. In: Tr. XI Konferentsii i X Shkoly molodykh uchenykh i spesialistov Kremnii−2016 = Proceedings of the 11th Conference and 10th School of Young Scientists and Specialists on Silicon−2016. Novosibirsk, 2016, p. 23.

26. Naumov A. V. The investment cycles of the polysilicon market. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronics Engineering, 2015, vol. 18, no. 3, pp. 172—178. (In Russ.). DOI: 10.17073/1609-3577-2015-3-172-178

27. GOST (State Standard) No. 12.1.010−76, Explosion proof. General requirements, 1999.

28. GOST (State Standard) No. 12.1.007−76, Harmful substances. Classification. General safety requirements, 1999.


Review

For citations:


Mitin V.V., Kokh A.A. The development of the market and the production technology of polycrystalline silicon. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(2):99-106. (In Russ.) https://doi.org/10.17073/1609-3577-2017-2-99-106

Views: 2417


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)