Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Numerical simulation and LEDs adaptation for grow lamp

https://doi.org/10.17073/1609-3577-2017-2-115-121

Abstract

Solid−state lighting technology based on LEDs offers ample opportunities in plant lighting. This article presents a prototype of a solid−state lamp based on InGaN LEDs with radiation peaks of 440, 460, 530 and AlInGaP with radiation peaks at 590, 630 and 660 nm, equipped with a source of stabilized current and an optimized radiator. The emission spectrum of the LED illuminator is the result of numerical simulation using an experimentally obtained absorption spectrum of a leaf of a plant. The effect of using LEDs was compared to the effect of a sodium tubular lamp. Evaluation of the results of biometric measurements that were made throughout the experiment showed the possibility of the effect of the spectrum of the proposed LED illuminator on plant growth.

About the Authors

S. I. Supelnyak
Kaluga Branch of Bauman Moscow State Technical University
Russian Federation
Postgraduate Student


V. G. Kosushkin
Kaluga Branch of Bauman Moscow State Technical University
Russian Federation
Professor, Head of the Material Sciences Department


References

1. Massa G. D., Kim H.−H., Wheeler R. M., Mitchell C. A. Plant productivity in response to LED lighting. HortScience, 2008, vol. 43, no. 7, pp. 1951—1956. DOI: 10.21273/HORTSCI.43.7.1951

2. Singh D., Basu C., Meinhardt−Wollweber M., Roth B. LEDs for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 2015, vol. 49, pp. 139—147. DOI: 10.1016/j. rser.2015.04.117

3. Yano A., Fujiwara K. Plant lighting system with five wavelength−band light−emitting diodes providing photon flux density and mixing ratio control. Plant Methods, 2012, vol. 8, no. 1, p. 46 (12 pp.). DOI: 10.1186/1746-4811-8-46

4. Urbonavičiūtė A., Duchovskis P., Brazaitytė A., Samuolienė G. Photophysiological investigations using light emitting diode illumination. Rural Development, 2009, vol. 4, no. 1, pp. 414—417.

5. Morrow R. C. LED lighting in horticulture. HortScience, 2008, vol. 43, no. 7, pp. 1947—1950. DOI: 10.21273/HORTSCI.43.7.1947

6. Novičkovas A., Brazaitytė A., Duchovskis P., Jankauskienė J., Samuolienė G., Virsilė A., Sirtautas R., Bliznikas Z., Zukauskas A. Solid−state lamps (LEDS) for the short−wavelength supplementary lighting in greenhouses: experimental results with cucumber. XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Greenhouse 2010 and Soilless Cultivation, 2010, art. no. 927, pp. 723—730. DOI: 10.17660/ActaHortic.2012.927.90

7. Olle M., Viršile A. The effects of light−emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science, 2013, vol. 22, no. 2, pp. 223—234. DOI: 10.23986/afsci.7897

8. Tennessen D. J., Bula R. J., Sharkey T. D. Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynthesis Research, 1995, vol. 44, no. 3, pp. 261—269. DOI: 10.1007/BF00048599

9. Sokolov A. V., Yuferev L. Yu Modeling the spectra of LED matrix lighting. Innovatsii v sel’skom khozyaistve = Innovations in Agriculture, 2014, no. 2, pp. 65—72. (In Russ.)

10. Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Methods in enzymology, vol. 148. New York: Academic Press Inc., 1987, pp. 350—382. DOI: 10.1016/0076-6879(87)48036-1

11. Alkema J., Seager S. L. The chemical pigments of plants. J. Chem. Educ., 1982, vol. 59, no. 3, p. 183. DOI: 10.1021/ed059p183

12. Kutateladze S. S. Teploperedacha i gidrodinamicheskoe soprotivlenie [Heat transfer and flow resistance]. Moscow: Energoatomizdat, 1990. 367 p. (In Russ.)

13. Naivelt G. S., Mazel K. B., Khusainov Ch. I., Zatikyan G. P., Sharov L. N., Kuznetsov S. A., Alekseev V. A., Kiselev L. M., Tikhonov V. I., Shuvaev Yu. N. Istochniki pitaniya radioelektronnoi apparatury [Power Supplies of Electronic Equipment]. Moscow: Radio i svyaz’, 1985, 576 p. (In Russ.)

14. Isachenko V. P., Osipova V. A., Sukomel A. S. Teploperedacha [Heat Transfer]. Moscow: Energoizdat, 1981, 416 p. (In Russ.)

15. Supelnyak S. I., Adarchin S. A., Strelchenko S. S., Kosushkin V. G. Development of methods for determining the absorption spectrum of biological systems by an example of plants. Engineering Journal: Science and Innovation, 2014, no. 12. (In Russ.). DOI: 10.18698/2308-6033-2014-12-1290


Review

For citations:


Supelnyak S.I., Kosushkin V.G. Numerical simulation and LEDs adaptation for grow lamp. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(2):115-121. (In Russ.) https://doi.org/10.17073/1609-3577-2017-2-115-121

Views: 771


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)