Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Synthesis and magnetoresistance of (Cd1−x Znx)3As2 (x = 0,007) crystals

https://doi.org/10.17073/1609-3577-2017-2-134-141

Abstract

The vapor phase growth of Cd3As2—Zn3As2 (in the following (Cd1−x Znx)3As2 solid solutions process is described. The (Cd0,993 Zn0,007)3As2 solid solution single crystals were synthesized. Scanning electron microscopy and electron diffraction data suggest high crystalline quality of studied sample. Its structure and surface morphology, indicating the presence of growth nuclei and cleavage planes, were investigated. Giant anisotropic magnetoresistance and Shubnikov — de Haas oscillations were observed at low temperatures. Obtained results suggests that peculiarities of Dirac semimetal phase persist in (Cd1−x Znx)3As2 solid solution at low zinc content. At the same time, there are indications of some differences with initial Cd3As2 properties.

About the Authors

A. V. Kochura
South−West State University
Russian Federation
Cand. Sci. (Phys.−Math.), Deputy Director


L. N. Oveshnikov
National Research Centre «Kurchatov Institute»; P. N. Lebedev Physical Institute, Russian Academy of Sciences
Russian Federation
Cand. Sci. (Phys.−Math.), Research Engineer


A. F. Knjazev
Kursk Construction College
Russian Federation
Dr. Sci. (Phys.−Math.)


A. P. Kuzmenko
Юго−Западный государственный университет
Russian Federation
Dr. Sci. (Phys.−Math.), Director


A. B. Davydov
P. N. Lebedev Physical Institute, Russian Academy of Sciences
Russian Federation
Cand. Sci. (Phys.−Math.), Senior Researcher


S. Yu. Gavrilkin
P. N. Lebedev Physical Institute, Russian Academy of Sciences
Russian Federation
Researcher


E. A. Pilyuk
State University of Belgorod
Russian Federation
Cand. Sci. (Phys.−Math.), Associate Professor


V. S. Zakhvalinskii
State University of Belgorod
Russian Federation
Dr. Sci. (Phys.−Math.), Professor


V. A. Kulbachinskii
National Research Centre «Kurchatov Institute»; M.V. Lomonosov Moscow State University
Russian Federation
Dr. Sci. (Phys.−Math.), Head of Department


B. A. Aronzon
National Research Centre «Kurchatov Institute»; P. N. Lebedev Physical Institute, Russian Academy of Sciences
Russian Federation
Dr. Sci. (Phys.−Math.), Chief Researcher


References

1. Armitage N. P., Mele E. J., Vishwanath A. Weyl and Dirac semimetals in three dimensional solids. Rev. Mod. Phys., 2018, vol. 90, no. 1, p. 015001. DOI: 10.1103/RevModPhys.90.015001

2. He L. P., Hong X. C., Dong J. K., Pan J., Zhang Z., Zhang J., Li S. Y. Quantum transport evidence for three−dimensional Dirac semimetal phase in Cd3As2. Phys. Rev. Lett., 2014, vol. 113, no. 24, p. 246402. DOI: 10.1103/PhysRevLett.113.246402

3. Feng J., Pang Y., Wu D., Wang Z., Weng H., Li J., Dai X., Fang Z., Shi Y., Lu L. Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points. Phys. Rev. B, 2015. vol. 92. no. 8, p. 081306(R). DOI: 10.1103/PhysRevB.92.081306

4. Zhang K., Pan H., Zhang M., Wei Z., Gao M., Song F., Wang X., Zhang R. Controllable synthesis and magnetotransport properties of Cd3As2 Dirac semimetal nanostructures. RSC Advances, 2017, vol. 7, no. 29, pp. 17689—17696. DOI: 10.1039/c7ra02847d

5. Li C.−Z., Zhu R., Ke X., Zhang J.−M., Wang L. X., Zhang L., Liao Z.−M., Yu D.−P. Synthesis and photovoltaic properties of Cd3As2 faceted nanoplates and nano−octahedrons. Cryst. Growth Design, 2015, vol. 15, no. 7, pp. 3264—3270. DOI: 10.1021/acs.cgd.5b00399

6. Galeeva A. V., Krylov I. V., Drozdov K. A., Knjazev A. F., Kochura A. V., Kuzmenko A. P., Zakhvalinskii V. S., Danilov S. N., Ryabova L. I., Khokhlov D. R. Electron energy relaxation under terahertz excitation in (Cd1−xZnx)3As2 Dirac semimetals. Belstein J. Nanotechnology, 2017, vol. 8, no. 1, pp. 167—171. DOI: 10.3762/ bjnano.8.17

7. Wang Q., Li C.−Z., Ge S., Li J.−G., Lu W., Lai J., Liu X., Ma J., Yu D.−P., Liao Z.−M., Sun D. Ultrafast broadband photodetectors based on three−dimensional Dirac semimetal Cd3As2. Nano Letters, 2017, vol. 17, no. 2, pp. 834—841. DOI: 10.1021/acs.nanolett.6b04084

8. Walowski J., Munzenberg M. Perspective: Ultrafast magnetism and THz spintronics. J. Appl. Phys., 2016, vol. 120, no. 14, p. 140901. DOI: 10.1063/1.4958846

9. Arushanov E. K. Crystal growth and characterization of II3V2 compounds. Prog. Crystal. Growth. Charact., 1981, vol. 3, no. 2–3, pp. 211—255. DOI: 10.1016/0146−3535(80)90020−9

10. Volodina G. F., Zakhvalinskii V. S., Kravtsov V. Kh. Crystal structure of α′′′−(Zn1−xCdx)3As2 (x = 0.26). Crystallography Reports, 2013, vol. 58, no. 4, pp. 563—567. DOI: 10.1134/S1063774513040226

11. Arushanov E. K. II3V2 compounds and alloys. Prog. Crystal. Growth. Charact., 1992, vol. 25, no. 3, pp. 131—201. DOI: 10.1016/0960− 8974(92)90030−T

12. Belogorokhov A. I., Zakharov I. S., Knyazev A. F., Kochura A. V. Photoelectric properties of Se−doped Cd1.23Zn1.77As2 crystals. Inorganic Materials, 2000, vol. 36, no. 7, pp. 653—656. DOI: 10.1007/ BF02758414

13. Liang T., Gibson Q., Ali M. N., Liu M., Cava R. J., Ong N. P. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nature Materials, 2015, vol. 14, no. 3, pp. 280—284. DOI: 10.1038/nmat4143

14. Lovett D. R. Semimetals and narrow band semiconductors. London: Pion Limited, 1977. 256 p.

15. Arushanov E. K., Knyazev A. F., Nateprov A. N., Radautsan S. I. Energy gap dependence of Cd3−xZnxAs2 on composition. Semiconductors, 1983, vol. 17, no. 7, pp. 759—761.

16. Lu H., Zhang X., Bian Y., Jia S. Topological Phase Transition in Single Crystals of (Cd1−xZnx)3As2. Scientific Reports, 2017, vol. 7, no. 1, p. 3148. DOI: 10.1038/s41598−017−03559−2

17. Sankar R., Neupane N., Xu S.−Y., Butler C. J., Zeljkovic I., Muthuselvam I. P., Huang F.−T., Guo S.−T., Karna S. K., Chu M.−W., Lee W.L., Lin M.−T., Jayavel R., Madhavan V., Hasan M. Z., Chou F. C. Large single crystal growth, transport property, and spectroscopic characterization of three−dimensional Dirac semimetal Cd3As2. Scientific Reports, 2015, vol. 5, p. 12966. DOI: 10.1038/srep12966

18. Ali M. N., Gibson Q., Jeon S., Zhou B. B., Yazdani A., Cava R. J. The crystal and electronic structures of Cd3As2, the three− dimensional electronic analogue of grapheme. Inorganic Chemistry, 2014. vol. 53, pp. 4062—4067. DOI: 10.1021/ic403163d

19. Schonher P., Hesjedal T. Structural properties and growth mechanism of Cd3As2 nanowires. Appl. Phys. Lett., 2015, vol. 106, no. 1, p. 013115. DOI: 10.1063/1.4905564

20. Zhang K., Pan H., Zhang M., Wei Z., Gao M., Song F., Wang X., Zhang R. Controllable synthesis and magnetotransport properties of Cd3As2 Dirac semimetal nanostructures. RSC Advances, 2017, vol. 7, no. 29, pp. 17689—17696. DOI: 10.1039/c7ra02847d

21. Cheng P., Zhang C., Liu Y., Yuan X., Song F., Sun Q., Zhou P., Zhang D. W., Xiu F. Thickness−dependent quantum oscillations in Cd3As2 thin films. New J. Phys, 2016, vol. 18, no. 8, p. 083003. DOI: 10.1088/1367−2630/18/8/083003

22. Kochura A. V., Marenkin S. F., Ril A. I., Zheludkevich A. L., Abakumov P. V., Knjazev A. F., Dobromyslov M. B. Growth and characterization of Cd3As2 + MnAs composite. J. Nano− and Electron. Phys., 2015, vol. 7, no. 4, p. 04079. URL: http://essuir.sumdu.edu.ua/ handle/123456789/44550

23. Sharafeev A., Gnezdilov V., Sankar R., Chou F.C., Lemmens P. Optical phonon dynamics and electronic fluctuations in the Dirac semimetal Cd3As2. Phys. Rev. B, 2017, vol. 95, no. 23, p. 235148. DOI: 10.1103/PhysRevB.95.235148

24. Abrikosov A. A. Quantum linear magnetoresistance; solution of an old mystery. J. Phys. A: Math. Gen., 2003, vol. 36, no. 35, pp. 9119—9131. DOI: 10.1088/0305−4470/36/35/301

25. Parish M. M., Littlewood P. B. Non−saturating magnetoresistance in heavily disordered semiconductors. Nature, 2003, vol. 426, no. 6963, pp. 162—166. DOI: 10.1038/nature02073

26. Zhao Y., Liu H., Zhang C., Wang H., Wang J., Lin Z., Xing Y., Lu H., Liu J., Wang Y., Brombosz S. M., Xiao Z., Jia S., Xie X. C., Wang J. Anisotropic Fermi surface and quantum limit transport in high mobility three−dimensional Dirac semimetal Cd3As2. Phys. Rev. X, 2015, vol. 5, no. 3, p. 031037. DOI: 10.1103/PhysRevX.5.031037

27. Narayanan A., Watson M. D., Blake S. F., Bruyant N., Drigo L., Chen Y. L., Prabhakaran D., Yan B., Felser C., Kong T., Canfield P. C., Coldea A. I. Linear magnetoresistance caused by mobility fluctuations in n−doped Cd3As2. Phys. Rev. Lett., 2015, vol. 114, no. 11, p. 117201. DOI: 10.1103/PhysRevLett.114.117201

28. Li H., He H., Lu H.−Z., Zhang H., Liu H., Ma R., Fan Z., Shen S.−Q., Wang J. Negative magnetoresistance in Dirac semimetal Cd3As2. Nature Comm., 2016, vol. 7, p. 10301. DOI: 10.1038/ ncomms10301


Review

For citations:


Kochura A.V., Oveshnikov L.N., Knjazev A.F., Kuzmenko A.P., Davydov A.B., Gavrilkin S.Yu., Pilyuk E.A., Zakhvalinskii V.S., Kulbachinskii V.A., Aronzon B.A. Synthesis and magnetoresistance of (Cd1−x Znx)3As2 (x = 0,007) crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(2):134-141. (In Russ.) https://doi.org/10.17073/1609-3577-2017-2-134-141

Views: 1167


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)