Modeling the mass transfer processes in the growth of KDP crystals from solution
https://doi.org/10.17073/1609-3577-2018-1-26-34
Abstract
Finding the conditions of high-speed single crystal growth with an appropriate quality is a priority for the industrial production of crystalline materials. Crystals of potassium dihydrogen phosphate (KDP) are important optical materials, they are grown from an aqueous solution and an increase in the rate of growth and quality of a single crystal is of great practical importance.
In this paper, mathematical simulation of hydrodynamic and mass transfer processes in growing KDP crystals is performed. The flow and mass transfer are modeled within the framework of continuous medium, which is considered as an aqueous solution of a special salt — potassium dihydrogen phosphate. This salt dissolves in water to a saturation level at a high temperature. Then, such supersaturated solution is used to grow crystals at lower temperatures in non-flowing and flowing crystallizers. The mathematical model is considered in a conjugate formulation with allowance for mass transfer in the
«solution—crystal» system. Local features of hydrodynamics and mass transfer in a solution near the surface of a growing crystal are determined, which can affect on the local (for a particular place and direction) crystal growth rate and the formation of defects. The requirements to the crystallizers that provide the «necessary» hydrodynamics in the solution are discussed. Its validation is shown for the flow around a long horizontal plate simulating the growing facet of the crystal. The rate of precipitation of salt was evaluated by the proposed mathematical model, which matches the calculation of solution flow according to the Navier-Stokes equations for an incompressible fluid with a thermodynamic condition for the normal growth of a face under conditions of two-dimensional nucleation. The action of the flowing crystallizers was analyzed for various solution inflows (axial and ring) and its outflow through the axial bottom hole.
About the Authors
N. A. VerezubRussian Federation
Nataliya A. Verezub: Cand. Sci. (Phys.-Math.), Senior Researcher
101–1 Prospekt Vernadskogo, Moscow 119526
V. L. Manomenova
Russian Federation
Vera L. Manomenova: Cand. Sci. (Chem.), Senior Researcher
59 Leninskiy Prospekt, Moscow 119333
A. I. Prostomolotov
Russian Federation
Anatoly I. Prostomolotov: Dr. Sci. (Eng.), Leading Researcher
101–1 Prospekt Vernadskogo, Moscow 119526
References
1. Voloshin A. E., Rashkovich L. N., Rudneva E. B., Manomenova V. L. We grow crystals. Priroda, 2014, no. 10, pp. 62—72. URL: http://priroda.ras.ru/pdf/2014-10.pdf
2. Voloshin A. E., Baskakova S. S., Rudneva E. B. Study of the defect formation in KDP crystals grown under extremely high supersaturation. J. Cryst. Growth, 2017, vol. 457, pp. 337—342. DOI: 10.1016/j.jcrysgro.2016.03.035
3. Cooper J. F. Rapid growth of KDP crystals. Energy and technology review, 1985, pp. 12—15. URL: https://lasers.llnl.gov/multimedia/publications/pdfs/etr/1985_08.pdf
4. Vorontsov D. A., Kim E. L. Rost kristallov digidrofosfata kaliya: morfologiya poverkhnosti i tekhnologiya vyrashchivaniya [Potassium dihydrogen phosphate crystal growth: surface morphology and growing technology]. Nizhny Novgorod: Nizhegorodskii gosuniversitet, 2012. 41 p. URL: http://www.unn.ru/pages/e-library/methodmaterial/files/KDP_crystal_growth.pdf
5. Verma1 S., Muralidhar K. Imaging convection, concentration and surface micromorphology during crystal growth from solution using optical diagnostics. Recent Res. Devel. Crystal Growth, 2009, vol. 5, pp. 141—314. URL: http://nptel.ac.in/courses/112104039/sup_5/article2.pdf
6. Mischgofsky F. H. Face stability and growth rate variations of the layer perovskite (C3H7NH3)2CuCl4. J. Cryst. Growth, 1978, vol. 44, no. 2, pp. 223—234. DOI: 10.1016/0022-0248(78)90196-3
7. Scheel H. J., Elwell D. Stability and stirring in crystal growth from high-temperature solutions. J. Electrochem. Soc., 1973, vol. 120, no. 6, pp. 818—824. DOI: 10.1149/1.2403569
8. Dinakaran S., Verma S., Das S. J., Kar S., Bartwal K. S. Influence of forced convection on unidirectional growth of crystals. Physica B: Condensed Matter, 2010, vol. 405, no. 18, pp. 3919—3923. DOI: 10.1016/j.physb.2010.06.028
9. Booth N. A., Chernov A. A., Vekilov P. G. Characteristic lengthscales of step bunching in KDP crystal growth: in situ differential phase-shifting interferometry study. J. Cryst. Growth, 2002, vol. 237–239, pp. 1818—1824. DOI: 10.1016/S0022-0248(01)02101-7
10. Chernov A. A. Step bunching and solution flow. J. Optoelectronics and Advanced Materials, 2003, vol. 5, no. 3, pp. 575—587. URL: https://joam.inoe.ro/arhiva/pdf5_3/Chernov.pdf
11. Vekilov P. G., Alexander J. I. D., Rosenberger F. Nonlinear response of layer growth dynamics in the mixed kinetics-bulk- transport regime. Phys. Rev. E, 1996, vol. 54, no. 6, pp. 6650—6660. DOI: 10.1103/PhysRevE.54.6650
12. Smolsky I. L., Zaitseva N. P., Rudneva E. B., Bogatyreva S. V. Formation of «hair» inclusions in rapidly grown potassium dihydrogen phosphate crystals. J. Cryst. Growth, 1996, vol. 166, no. 1–4, pp. 228—233. DOI: 10.1016/0022-0248(96)00080-2
13. Coriell S. R., Murray B. T., Chernov A. A., McFadden G. B. Step bunching on a vicinal face of a crystal growing in a flowing solution. J. Cryst. Growth, 1996, vol. 169, no. 4, pp. 773—785. DOI: 10.1016/S0022-0248(96)00470-8
14. Coriell S. R., Murray B. T., Chernov A. A., McFadden G. B. The effect of a shear flow on the morphological stability of a vicinal face: Growth from a supersaturated solution. Advances in Space Research, 1998, vol. 22, no. 8, pp. 1153—1158. DOI: 10.1016/S02731177(98)00158-6
15. Potapenko S. Yu. Formation of solution inclusions in crystal under effect of solution flow. J. Cryst. Growth, 1998, vol. 186, no. 3, pp. 446—455. DOI: 10.1016/S0022-0248(97)00542-3
16. Robey H. F., Potapenko S. Yu. Ex situ microscopic observation of the lateral instability of macrosteps on the surfaces of rapidly grown KH2PO4 crystals. J. Cryst. Growth, 2000, vol. 213, no. 3–4, pp. 355—367. DOI: 10.1016/S0022-0248(00)00025-7
17. Vartak B., Yeckel A., Derby J. J. Time-dependent, three- dimensional flow and mass transport during solution growth of potassium titanyl phosphate. J. Cryst. Growth, 2005, vol. 281, no. 2–4, pp. 391—406. DOI: 10.1016/j.jcrysgro.2005.04.037
18. Chuan Zhou, Mingwei Li, Zhitao Hu, Huawei Yin, Bangguo Wang, Qidong Cui. Simulation of the flow and mass transfer for KDP crystals undergoing 2D translation during growth. J. Cryst. Growth, 2016, vol. 450, pp. 103—118. DOI: 10.1016/j.jcrysgro.2016.05.052
19. Brailovskaya V. A., Zilberberg V. V., Feoktistova L. V. Numerical investigation of natural and forced solutal convection above the surface of a growing crystal. J. Cryst. Growth, 2000, vol. 210, no. 4, pp. 767—771. DOI: 10.1016/S0022-0248(99)00745-9
20. Robey H. F. Numerical simulation of the hydrodynamics and mass transfer in the large scale, rapid growth of KDP crystals-2: computation of the mass transfer. J. Cryst. Growth, 2003, vol. 259, no. 4, pp. 388—403. DOI: 10.1016/j.jcrysgro.2003.06.001
21. Liiri M., Enqvist Y., Kallas J., Aittamaa J. CFD modelling of single crystal growth of potassium dihydrogen phosphate (KDP) from binary water solution at 30 °C. J. Cryst. Growth, 2006, vol. 286, no. 2, pp. 413—423. DOI: 10.1016/j.jcrysgro.2005.09.044
22. Prostomolotov A. I., Ilyasov H. H., Verezub N. A. CrystmoNet remote access code for Czochralski crystal growth modelling. Science and Technology, 2013, vol. 3, no. 2A, pp. 18—25. DOI: 10.5923/s.scit.201301.04
23. Polezhaev V. I., Bune A. V., Verezub N. A., Glushko G. S., Gryaznov V. L., Dubovik K. G., Nikitin S. A., Prostomolotov A. I., Fedoseev A. I., Cherkasov S. G. Matematicheskoe modelirovanie konvektivnogo teplomassoobmena na osnove uravnenii Nav’e—Stoksa [Mathematical modeling of convective heat and mass transfer based on the Navier–Stokes equations]. Moscow: Nauka, 1987. 270 p.
24. Xiaoding Wang, Mingwei Li, Yachao Cao, Jie Song, Zhitao Hu. 3D numerical simulation for single crystal growth of potassium dihydrogen phosphate in a new solution growth system. J. Cryst. Growth, 2011, vol. 327, no. 1, pp. 102—109. DOI: 10.1016/j.jcrysgro.2011.04.045
25. Voloshin A. E., Prostomolotov A. I., Verezub N. A. On the accuracy of analytical models of impurity segregation during directional melt crystallization and their applicability for quantitative calculations. J. Cryst. Growth, 2016, vol. 453, pp. 188—197. DOI: 10.1016/j.jcrysgro.2016.08.003
Review
For citations:
Verezub N.A., Manomenova V.L., Prostomolotov A.I. Modeling the mass transfer processes in the growth of KDP crystals from solution. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(1):26-34. (In Russ.) https://doi.org/10.17073/1609-3577-2018-1-26-34