Thermally stimulated oxygen desorption in Sr2FeMoO6-δ
https://doi.org/10.17073/1609-3577-2018-1-48-53
Abstract
Polycrystalline Sr2FeMoO6-δ specimens have been obtained by solid state synthesis from partially reduced SrFeO2.52 and SrMoO4 precursors. It has been shown that during oxygen desorption from the Sr2FeMoO6-δ compound in polythermal mode in a 5%H2/Ar gas flow at different heating rates, the oxygen index 6–δ depends on the heating rate and does not achieve saturation at T = 1420 K. Oxygen diffusion activation energy calculation using the Merzhanov method has shown that at an early stage of oxygen desorption from the Sr2FeMoO6-δ compound the oxygen diffusion activation energy is the lowest Еа = 76.7 kJ/mole at δ = 0.005. With an increase in the concentration of oxygen vacancies, the oxygen diffusion activation energy grows to Еа = 156.3 kJ/mole at δ = 0.06. It has been found that the dδ/dt = f(Т) AND dδ/dt = f(δ) functions have a typical break which allows one to divide oxygen desorption in two process stages. It is hypothesized that an increase in the concentration of oxygen vacancies V ·· leads to their mutual interaction followed by ordering in the Fe/Mo–O1 crystallographic planes with the formation of various types of associations.
About the Author
N. A. KalandaBelarus
Nikolay A. Kalanda: Cand. Sci. (Phys.-Math.), Leading Researcher
19 P. Brovki Str., Minsk, 220072
References
1. Serrate D., De Teresa J. M., Ibarra M. R. Double perovskites with ferromagnetism above room temperature. J. Phys.: Condensed Matter, 2007, vol. 19, no. 2, pp. 1—86. DOI: 10.1088/09538984/19/2/023201
2. Topwal D., Sarma D. D., Kato H., Tokura Y., Avignon M. Structural and magnetic properties of Sr2Fe1+xMo1-xO6(-1x0.25). Phys. Rev. B., 2006, vol. 73, no. 9, pp. 0944191—0944195. DOI: 10.1103/PhysRevB.73.094419
3. Chana T. S., Liua R. S., Hub S. F., Linc J. G. Structure and physical properties of double perovskite compounds Sr2FeMO6 (M = Mo, W). Mater. Chem. Phys., 2005, vol. 93, no. 2–3, pp. 314—319. DOI: 10.1016/j.matchemphys.2005.03.060
4. Kovalev L. V., Yarmolich M. V., Petrova M. L., Ustarroz J., Terryn H. A., Kalanda N. A., Zheludkevich M. L. Double perovskite Sr2FeMoO6 films prepared by electrophoretic deposition. АСС Appl. Mater. Interfaces, 2014, vol. 6, no. 21, pp. 19201—19206. DOI: 10.1021/ am5052125
5. dos Santos-Gómez L., León-Reina L., Porras-Vázquez J. M., Losilla E. R., Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, vol. 239, pp. 1—7. DOI: 10.1016/j.ssi.2013.03.005
6. Kalanda N., Kim D.-H., Demyanov S., Yu S.-C., Yarmolich M., Petrov A., Suhk K. O. Sr2FeMoO6 nanosized compound with dielectric sheaths for magnetically sensitive spintronic devices. Current Applied Physics, 2018, vol. 18, no. 1, pp. 27—33 DOI: 10.1016/j. cap.2017.10.018
7. Stoeffler D., Colis S. Oxygen vacancies or/and antisite imperfections in Sr2FeMoO6 double perovskites: an ab initio investigation. J. Phys.: Condensed Matter, 2005, Vol. 17, no. 41, pp. 6415—6424. DOI: 10.1088/0953-8984/17/41/012
8. Yarmolich M. V., Kalanda N. A., Yaremchenko A. A., Gavrilov S. A., Dronov A. A., Silibin M.V . Sequence of phase transformations and inhomogeneous magnetic state in nanosized Sr2FeMoO6-. Inorganic Materials, 2017, vol. 53, no. 1, pp. 96—102. DOI: 10.1134/S0020168517010186
9. Rager J., Zipperle M., Sharma A., MacManus-Driscoll J. L. Oxygen stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO–Fe3O4– MoO3. J. Am. Ceram. Soc., 2004, vol. 87, no. 7, pp. 1330—1335. DOI: 10.1111/j.1151-2916.2004.tb07730.x
10. Liscio F., Bardelli F., Meneghini C., Mobilio S., Ray S., Sarma D. D. Local structure and magneto-transport in Sr2FeMoO6 oxides. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, vol. 246, no. 1, pp. 189—193. DOI: 10.1016/j.nimb.2005.12.033
11. Allub R., Navarro O., Avignon M., Alascio B. Effect of disorder on the electronic structure of the double perovskite Sr2FeMoO6. Phys. B: Condensed Matter, 2002, vol. 320, no. 1–4, pp. 13—17. DOI: 10.1016/S0921-4526(02)00608-7
12. Tovar M., Causa M. T., Butera A., Navarro J., Martínez B., Fontcuberta J., Passeggi M. C. G. Evidence of strong antiferromag netic coupling between localized and itinerant electrons in ferromagnetic Sr2FeMoO6. Phys. Rev. B, 2002, vol. 66, no. 2, pp. 024409–1—17. DOI: 10.1103/PhysRevB.66.024409
13. Lindén J., Yamamoto T., Karppinen M., Yamauchi H. Evidence for valence fluctuation of Fe in Sr2FeMoO6-w double perovskite. Appl. Phys. Lett., 2000, vol. 76, no. 20, pp. 2925—2927. DOI: 10.1063/1.126518
14. Sarma D. D., Mahadevan P., Saha-Dasgupta T., Ray S., Kumar A. Electronic Structure of Sr2FeMoO6. Phys. Rev. Lett., 2000, vol. 85, no. 12, pp. 2549—2552. DOI: 10.1103/PhysRevLett.85.2549
15. Niebieskikwiat D., Caneiro A., Sánchez R. D., Fontcuberta J. Oxygen-induced grain boundary effects on magnetotransport properties of Sr2FeMoO6-. Phys. Rev. B, 2001, vol. 64, no. 18, pp. 180406–1—4. DOI: 10.1103/PhysRevB.64.180406
16. Jurca B., Berthon J., Dragoe N., Berthet P. Influence of successive sintering treatments on high ordered Sr2FeMoO6 double perovskite properties. J. Alloys and Compounds, 2009, vol. 474, no. 1–2, pp. 416—423. DOI: 10.1016/j.jallcom.2008.06.100
17. MacManus-Driscoll J., Sharma A., Bugoslavsky Y., Branford W., Cohen L. F., Wei M., Reversible low-field magnetoresistance in Sr2Fe2-xMoxO6- by oxygen cycling and the role of excess Mo (x > 1) in grain-boundary regions. Advanced Materials, 2006, vol. 18, no. 7, pp. 900—904. DOI: 10.1002/adma.200501277
18. Matsuda Y., Karppinen M., Yamazaki Y., Yamauchi H. Oxygen-vacancy concentration in A2MgMoO6- double-perovskite oxides. J. Solid State Chemistry, 2009, vol. 182, no. 7, pp. 1713—1716. DOI: 10.1016/j.jssc.2009.04.016
19. Sharma A., MacManus-Driscoll J. L., Branford W., Bugoslavsky Y., Cohen L. F., Rager J. Phase stability and optimum oxygenation conditions for Sr2FeMoO6 formation. Appl. Phys. Lett., 2005, vol. 87, no. 11, pp. 112505–1—3. DOI: 10.1063/1.2048810
20. Kircheisen R., Töpfer J. Nonstoichiometry, point defects and magnetic properties in Sr2FeMoO6- double perovskites. J. Solid State Chemistry, 2012, vol. 185, pp. 76—81. DOI: 10.1016/j.jssc.2011.10.043
21. Kraus W., Nolze G. POWDER CELL-a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst., 1996, vol. 29, no. 3, pp. 301—303. DOI: 10.1107/S0021889895014920
22. Rodríguez-Carvajal J. Recent developments of the program FULLPROF. Commission on powder diffraction (IUCr). Newsletter, 2001, vol. 26, pp. 12—19.
23. Меrzhanov А. G., Barzykin V. V., Shteinberg A. S., Gontkovskayaт V. T. Methodological Principles in studying chemical reaction kinetics under conditions of programmed heating. Thermochimica Acta, 1977, vol. 21, no. 3, pp. 301—332. DOI: 10.1016/00406031(77)85001-6
24. Sánchez-Rodríguez D., Eloussifi H., Farjas J., Roura P., Dammak M. Thermal gradients in thermal analysis experiments: Criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochimica Acta, 2014, vol. 589, pp. 37—46. DOI: 10.1016/j.tca.2014.05.001
Review
For citations:
Kalanda N.A. Thermally stimulated oxygen desorption in Sr2FeMoO6-δ. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(1):48-53. (In Russ.) https://doi.org/10.17073/1609-3577-2018-1-48-53