Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Optical characteristics of Gd3Al2Ga3O12 : Ce single-crystal material

https://doi.org/10.17073/1609-3577-2018-1-18-25

Abstract

Nowadays new high-energy emission detection technologies with use of materials doped with rare-earth activators appear. There is still a great need for the development of new inorganic scintillators for medical application in particular detection of X-rays and -grays. In this case, the scintillation materials must meet basic requirements: high optical quality, high light output, fast response time and et al. One of these materials is the scintillation crystal Gd3Al2Ga3O12 : Ce (GAGG : Ce) investigated in this work. Analysis of the literature data showed that the optical characteristics of Gd3Al2Ga3O12 : Ce have not been studied enough. Hence the GAGG : Ce optical parameters (spectral transmission and reflection) were measured by optical spectroscopy in the wavelength range 200—750 nm. We calculated values of the absorption and extinction coefficients, refractive indices and the optical band gap of the Gd3Al2Ga3O12 : Ce. We used two spectrophotometric methods to determine the values of the refractive index: Brewster angles (jB) and the reflection coefficients at a small incidence angle of light close to normal (R0). The obtained results were used to build dispersion dependences graphs of the refractive indices.

About the Authors

N. S. Kozlova
National University of Science and Technology MISiS
Russian Federation

Nina S. Kozlova: Cand. Sci. (Phys.-Math.), Head of Laboratory 

4 Leninsky Prospekt, Moscow 119049



O. A. Buzanov
JSC FomosMaterials
Russian Federation

Oleg A. Buzanov: Cand. Sci. (Eng.), Leading Researcher 

16 Buzheninova Str., Moscow 107023

 



V. M. Kasimova
National University of Science and Technology MISiS
Russian Federation

Valentina M. Kasimova: Master Student 

4 Leninsky Prospekt, Moscow 119049



A. P. Kozlova
National University of Science and Technology MISiS
Russian Federation

Anna P. Kozlova: Leading Engineer 

4 Leninsky Prospekt, Moscow 119049



E. V. Zabelina
National University of Science and Technology MISiS
Russian Federation

Evgeniya V. Zabelina: Leading Engineer 

4 Leninsky Prospekt, Moscow 119049



References

1. Somlai-Schweiger I., Schneider F. R., Ziegler S. I. Performance analysis of digital silicon photomultipliers for PET. J. Instrumentation, 2015, vol. 10, p. 05005. DOI: 10.1088/1748-0221/10/05/P05005

2. Yeom J. Y., Yamamoto S., Derenzo S. E., Spanoudaki V. C., Kamada K., Endo T., Levin C. S. First performance results of Ce: GAGG scintillation crystals with silicon photomultipliers. IEEE Transactions on Nuclear Science, 2013, vol. 60, no. 2, pp. 988—992. DOI: 10.1109/TNS.2012.2233497

3. Bok J., Lalinský O., Hanuš M., Onderišinová Z., Kelar J., Kučera M. GAGG: Ce single crystalline films: New perspective scintillators for electron detection in SEM. Ultramicroscopy, 2016, vol. 163, pp. 1—5. DOI: 10.1016/j.ultramic.2016.01.003

4. Lecoq P. Development of new scintillators for medical applications. Nuclear Instrum. and Meth. in Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, vol. 809, pp. 130—139. DOI: 10.1016/j.nima.2015.08.041

5. Seitz B., Stewart A.G., O’Neill K., Wall L., Jackson C. Performance evaluation of novel SiPM for medical imaging applications. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Seoul (South Korea), 2013, pp. 1—4. DOI: 10.1109/NSSMIC.2013.6829685

6. Kamada K., Yanagida T., Endo T., Tsutumi K., Usuki Y., Nikl M., Fujimoto Y., Yoshikawa A. 2-inch size single crystal growth and scintillation properties of new scintillator; Ce : Gd3Al2Ga3O12. IEEE Nuclear Sci. Symp. Conf. Rec. Valencia (Spain), 2011, pp. 1927—1929. DOI: 10.1109/NSSMIC.2011.6154387

7. Kanai T., Satoh M., Miura I. Characteristics of a nonstoichiometric Gd3+δ(Al,Ga)5−δO12:Ce :Ce garnet scintillator. J. Amer. Ceramic Soc., 2008, vol. 91, no. 2, pp. 456—462. DOI: 10.1111/j.15512916.2007.02123.x

8. Tyagi M., Meng F., Koschan M., Donnald S. B., Rothfuss H., Melcher C. L. Effect of codoping on scintillation and optical properties of a Ce-doped Gd3Ga3Al2O12 scintillator. J. Phys. D: Appl. Phys., 2013, vol. 46, no. 47, p. 475302. DOI: 10.1088/0022-3727/46/47/475302

9. Kozlova N. S., Busanov O. A., Zabelina E. V., Kozlova A. P., Kasimova V. M. Optical properties and refractive indices of Gd3Al2Ga3O12 : Ce3+ crystals. Crystallogr. Rep., 2016, vol. 61, no. 3, pp. 474—478. DOI: 10.1134/S1063774516030160

10. Shaskol’skaya M.P. Kristallografiya [Crystallography]. Moscow: Vysshaya shkola, 1984, 376 p. (In Russ.)

11. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A, 1976, vol. 32, no. 5, pp. 751—767. DOI: 10.1107/S0567739476001551

12. Wu Y., Luo Z., Jiang H. Meng F., Koschan M., Melcher C. L. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study. Nuclear Instrum. and Meth. in Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, vol. 780, pp. 45—50. DOI: 10.1016/j.nima.2015.01.057

13. Asami K., Ueda J., Tanabe S. Trap depth and color variation of Ce3+-Cr3+ co-doped Gd3(Al, Ga)5O12 garnet persistent phosphors. Optical Mater., 2016, vol. 62, pp. 171—175. DOI: 10.1016/j.optmat.2016.09.052

14. Wu Y., Nikl M., Jary V., Ren G. Thermally induced ionization of 5d1 state of Ce3+ ion in Gd3Ga3Al2O12 host. Chemical Phys. Lett., 2013, vol. 574, pp. 56—60. DOI: 10.1016/j.cplett.2013.04.068

15. Wu Y., Meng F., Li Q., Koschan M., Melcher C. L. Role of Ce4+ in the scintillation mechanism of codoped Gd3Ga3Al2O12:Ce. Phys. Rev. Appl., 2014, V. 2, no. 4. P. 044009. DOI: 10.1103/PhysRevApplied.2.044009

16. Kitaura M., Sato A., Kamada K., Ohnishi A., Sasaki M. Phosphorescence of Ce-doped Gd3Al2Ga3O12 crystals studied using luminescence spectroscopy. J. Appl. Phys., 2014, vol. 115, no. 8, p. 083517. DOI: 10.1063/1.4867315

17. Kasimova V. M., Buzanov O. A., Kozlova N. S., Kozlova A. P. Scintillation material Gd3Al2Ga3O12:Се. Fundamental’nye problemy radioelektronnogo priborostroeniya = Fundamental Problems of Radio Electronic Instrument Making, 2015, vol. 15, no. 2, pp. 79—82. (In Russ.)

18. Kobayashi M., Tamagawa Y., Tomita S., Yamamoto A., Ogawa I., Usuki Y. Significantly different pulse shapes for γ− and α−rays in Gd3Al2Ga3O12:Ce3+ scintillating crystals. Nucl. Instrum. and Meth. in Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, vol. 694, pp. 91—94. DOI: 10.1016/j.nima.2012.07.055

19. Tamagawa Y., Inukai Y., Ogawa I., Kobayashi M. Alpha-gamma pulse-shape discrimination in Gd3Al2Ga3O12 (GAGG) : Ce3+ crystal scintillator using shape indicator. Nucl. Instrum. and Meth. in Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, vol. 795, pp. 192—195. DOI: 10.1016/j.nima.2015.05.052

20. Kamada K., Shoji Y., Kochurikhin V. V., Okumura S., Yamamoto S., Nagura A., Yeom J. Y., Kurosawa S., Yokota Y., Ohashi Y., Nikl M., Yoshikawa A. Growth and scintillation properties of 3 in. diameter Ce doped Gd3Ga3Al2O12 scintillation single crystal. J. Cryst. Growth, 2016, vol. 452, pp. 81—84. DOI: 10.1016/j.jcrysgro.2016.04.037

21. Kozlova N. S., Kozlova A. P., Goreeva Zh. A. Spectrophotometric methods and their capabilities to study material optical parameters. IEEE 2nd Internat. Ural Conf. on Measurements (UralCon). Chelyabinsk (Russia), 2017, pp. 281—288. DOI: 10.1109/URALCON.2017.8120724

22. Palik E. D. Handbook of optical constants of solids. N-Y.: Academic Press, 1998, 3224 p.

23. Borisenko S. I., Revinskaya O. G., Kravchenko N. S., Chernov A. V. Pokazatel’ prelomleniya sveta i metody ego eksperimental’nogo opredeleniya [The refractive index of light and methods of its experimental determination]. Tomsk: Tomskii politekhnicheskii universitet, 2014. 146 p. (In Russ.)

24. Stephenson D. Modeling variation in the refractive index of optical glasses: thesis. N-Y.: Rochester Institute of Technology, 1990, 163 p.

25. Vavilov V. S. Deistvie izluchenii na poluprovodniki [Effect of radiation on semiconductors]. Moscow: Gosudarstvennoe izdatel’stvo fiziko-matematicheskoi literatury, 1963, 264 p. (In Russ.)

26. Kitaura M., Sato A., Kamada K., Kurosawa S., Ohnishi A., Sasaki M., Hara K. Photoluminescence studies on energy transfer processes in cerium-doped Gd3Al2Ga3O12 crystals. Optical Mater., 2015, vol. 41, pp. 45—48. DOI: 10.1016/j.optmat.2014.12.040

27. Bartosiewicz K., Babin V., Kamada K., Yoshikawa A., Nikl M. Energy migration processes in undoped and Ce-doped multicomponent garnet single crystal scintillators. J. Luminescence, 2015, vol. 166, pp. 117—122. DOI: 10.1016/j.jlumin.2015.05.015

28. Zhaohua Luo, Haochuan Jiang, Jun Jiang, Rihua Mao. Microstructure and optical characteristics of Ce : Gd3(Ga, Al)5O12 ceramic for scintillator application. Ceramics International, 2015, vol. 41, no. 1, pt A, pp. 873—876. DOI: 10.1016/j.ceramint.2014.08.137

29. Auffray E., Augulis R., Borisevich A., Gulbinas V., Fedorov A., Korjik M., Lucchini M. T., Mechinsky V., Nargelas S., Songaila E., Tamulaitis G., Vaitkevičius A., Zazubovich S. Luminescence rise time in selfactivated PbWO4 and Cedoped Gd3Al2Ga3O12 scintillation crystals. J. Luminescence, 2016, vol. 178, pp. 54—60. DOI: 10.1016/j.jlumin.2016.05.015

30. Marcus P. Corrosion mechanism in theory and practice. N-Y: CRC Press, 2012, 930 p.

31. Xu Y. N., Ching W. Y., Brickeen B. K. Electronic structure and bonding in garnet crystals Gd3Sc2Ga3O12, Gd3Sc2Al3O12, and Gd3Ga3O12 compared to Y3Al5O12. Phys. Rev. B, 2000, vol. 61, no. 3, p. 1817. DOI: 10.1103/PhysRevB.61.1817

32. Rawat S., Tyagi M., Netrakanti P. K., Kashyap V. K. S., Mitra A., Singh A. K., Desai D. G., Kumar G. A., Gadkari S. C. Pulse shape discrimination properties of Gd3Ga3Al2O12 : Ce, B single crystal in comparison with CsI : Tl. Nucl. Instrum. and Meth. in Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, vol. 840, pp. 186—191. DOI: 10.1016/j.nima.2016.09.060

33. Hassanien A. S., Akl A. A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices and Microstructures, 2016, vol. 89, pp. 153—169. DOI: 10.1016/j.spmi.2015.10.044

34. Jacob R., Isac J. Band gap energy profile of BSFT Ba0.6Sr0.4FexTi(1−x)O3−∆ (x = 0.1) // Int. J. Sci. Res. Publ. 2014. V. 4, Iss. 12, P. 1—6. URL: http://www.ijsrp.org/research-paper-1214.php?rp=P363435

35. Banerjee A. N., Maity R., Chattopadhyay K. K. Preparation of p-type transparent conducting CuAlO2 thin films by reactive DC sputtering. Mater. Lett., 2004, vol. 58, no. 1–2, pp. 10—13. DOI: 10.1016/S0167-577X(03)00395-1

36. Mishra V., Sagdeo A., Warshi K., Rai H. M., Saxena S. K., Kumar R., Sagdeo P. R. Metastable behavior of Urbach tail states in BaTiO3 across phase transition. arXiv: Condensed Matter., 2016. URL: https://arxiv.org/abs/1612.067

37. Kozlova N. S., Goreeva Zh. A., Zabelina Ev. V. Testing quality assurance of single crystals and stock on their base. IEEE 2nd Internat. Ural Conf. on Measurements (UralCon). Chelyabinsk (Russia), 2017, pp. 15–22. DOI: 10.1109/URALCON.2017.8120681


Review

For citations:


Kozlova N.S., Buzanov O.A., Kasimova V.M., Kozlova A.P., Zabelina E.V. Optical characteristics of Gd3Al2Ga3O12 : Ce single-crystal material. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(1):18-25. (In Russ.) https://doi.org/10.17073/1609-3577-2018-1-18-25

Views: 1038


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)