Оценка степени кристаллографического упорядочения магнитоактивных ионов в Sr2FeMoO6-δ с помощью интенсивности рентгеновского пика (101)
https://doi.org/10.17073/1609-3577-2019-2-135-142
Аннотация
Об авторах
Е. АртюхБеларусь
ул. П. Бровки, д. 19, Минск, 220072
Артюх Евгений
Г. Суханек
Германия
01062 Дрезден
Суханек Гуннар
Список литературы
1. Serrate D., De Teresa J. M., Ibarra M. R. Double perovskites with ferromagnetism above room temperature // J. Phys.: Condens. Matter. 2006. V. 19, Iss. 2. P. 023201 (86pp). DOI: 10.1088/0953-8984/19/2/023201
2. Kobayashi K.-I., Kimura T., Sawada H., Terakura K., Tokura Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure // Nature. 1998. V. 395. P. 677—680. DOI: 10.1038/27167
3. Tomioka Y., Okuda T., Okimoto Y., Kumai R., Kobayashi K.-I., Tokura Y. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6 // Phys. Rev. B. 2000. V. 61, Iss. 1. P. 422—427. DOI: 10.1103/PhysRevB.61.422
4. Retuerto M., Alonso J. A., Martínez-Lope M. J., Martínez J. L., García-Hernández M. Record saturation magnetization, Curie temperature, and magnetoresistance in double perovskite synthesized by wet-chemistry techniques // Appl. Phys. Lett., 2004. V. 85, Iss. 2. P. 266—268. DOI: 10.1063/1.1772857
5. Suchaneck G., Kalanda N., Artsiukh E., Gerlach G. Challenges in Sr2FeMoO6 thin film deposition // Phys. Status Solidi (b). 2019. V. 257, Iss. 3. P. 1900312. DOI: 10.1002/pssb.201900312
6. Balcells Ll., Navarro J., Bibes M., Roig A., Martı́nez B., Fontcuberta J. Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite // Appl. Phys. Lett. 2001. V. 78. P. 781—783. DOI: 10.1063/1.1346624
7. Harnagea L., Berthet P. The effect of strontium non-stoichiometry on the physical properties of double perovskite Sr2FeMoO6 // J. Solid State Chem. 2015. V. 222. P. 115—122. DOI: 10.1016/j.jssc.2014.11.017
8. Fix T. Couches minces de Sr2FeMoO6 élaborées par ablation laser pour des jonctions tunnel magnétiques. Diss. Dr. Sci. (Phys.-Math.), Strasbourg, 2006.
9. Park B. J., Han H., Kim J., Kim Y. J., Kim C. S., Lee B. W. Correlation between anti-site disorder and magnetic properties in ordered perovskite Sr2FeMoO6 // J. Magnetism and Magnetic Materials. 2004. V. 272, Iss. 3. P. 1851—1852. DOI: 10.1016/j.jmmm.2003.12.429
10. Moritomo Y., Shimamoto N., Xu S., Machida A., Nishibori E., Takata M., Sakata M., Nakamura A. Effects of B-site disorder in Sr2FeMoO6 with double perovskite structure // Jpn. J. Appl. Phys. 2001. V. 40, Pt 2, N 7A. P. L672— L674. DOI: 10.1143/JJAP.40.L672
11. Mishra R., Restrepo O. D., Woodward P. M., Windl W. First-principles study of defective and nonstoichiometric Sr2FeMoO6 // Chemistry of Materials. 2010. V. 22, Iss. 22. P. 6092—6102. DOI: 10.1021/cm101587e
12. Kalanda M., Suchaneck G., Saad A., Demyanov S., Gerlach G. Influence of oxygen stoichiometry and cation ordering on magnetoresistive properties of Sr2FeMoO6±δ // Materials Science Forum. 2010. V. 636–637. P. 338—343. DOI: 10.4028/www.scientific.net/MSF.636-637.338
13. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data // J. Appl. Cryst. 2011. V. 44. P. 1272—1276. DOI: 10.1107/S0021889811038970
14. Saloaro M., Deniz H., Huhtinen H., Palonen H., Majumdar S., Paturi P. The predominance of substrate induced defects in magnetic properties of Sr2FeMoO6 thin films // J. Phys.: Condens. Matter. 2015. V. 27. P. 386001 (11pp). DOI: 10.1088/0953-8984/27/38/386001
15. Kircheisen R., Töpfer J. Nonstoichiometry. Point defects and magnetic properties in Sr2FeMoO6-δ double perovskites // J. Solid State Chem. 2015. V. 185. P. 76—81. DOI: 10.1016/j.jssc.2011.10.043
16. Wang J.-F., Li Z., Xu X.-J., Gu Z.-B., Yuan G.-L., Zhang S.-T. The competitive and combining effects of grain boundary and Fe/Mo antisite defects on the low-field magnetoresistance in Sr2FeMoO6 // J. American Ceramic Society. 2014. V. 97. P. 1137—1142. DOI: 10.1111/jace.12749
17. Kuepper K., Balasz I., Hesse H., Winiarski A., Prince K. C., Matteucci M., Wett D., Szargan R., Burzo E., Neumann M. Electronic and magnetic properties of highly ordered Sr2FeMoO6 // Phys. Status Solidi (a). 2004. V. 201, Iss. 15. P. 3252—3256. DOI: 10.1002/pssa.200405432
18. Sui Y., Wang X. J., Qian Z. N., Cheng J. G., Liu Z. G., Miao J. P., Li Y., Su W. H., Ong C. K. Enhancement of low-field magnetoresistance in polycrystalline Sr2FeMoO6 with doping // Appl. Phys. Lett. 2004. V. 85, Iss. 2. P. 269—271. DOI: 10.1063/1.1769581
19. Sarma D. D., Ray S., Tanaka K., Kobayashi A., Fujimori A., Sanyal P., Krishnamurthy H. R., Dasgupta C. Intergranular magnetoresistance in Sr2FeMoO6 from a magnetic tunnel barrier mechanism across grain boundaries // Phys. Rev. Lett. 2007. V. 98. P. 157205 (4pp). DOI: 10.1103/PhysRevLett.98.157205
20. Hayes J. R., Grosvenor A. P. An investigation of the Fe and Mo oxidation states in Sr2Fe2-xMoxO6 (0.25 < x < 1.0) double perovskites by X-ray absorption spectroscopy // J. Alloys and Compounds. 2012. V. 537. P. 323—331. DOI: 10.1016/j.jallcom.2012.05.056
21. Spiess L., Teichert G., Schwarzer R., Behnken H., Genzel C. Moderne Röntgenbeugung: Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker. Berlin; Heidelberg; Wiesbaden: Springer Spektrum, 2019. 624 p. DOI: 10.1007/978-3-8348-8232-5
22. Izumi F., Momma K. Three-dimensional visualization in powder diffraction // Solid State Phenomena. 2007. V. 130. P. 15—20. DOI: 10.4028/www.scientific.net/SSP.130.15
23. Adeagbo W. A., Hoffmann M., Ernst A., Hergert W., Saloaro M., Paturi P., Kokko K. Tuning the probability of defect formation via substrate strains in Sr2FeMoO6 films // Phys. Rev. Mater. 2018. V. 2, Iss. 8. P. 083604 (9pp). DOI: 10.1103/PhysRevMaterials.2.083604
24. Liu G. Y., Rao G. H., Feng X. M., Yang H. F., Ouyang Z. W., Liu W. F., Liang J. K. Atomic ordering and magnetic properties of non-stoichiometric double-perovskite Sr2FexMo2-xO6 // J. Phys.: Condens. Matter. 2003. V. 15, Iss. 12. P. 2053—2060. DOI: 10.1088/0953-8984/15/12/322
25. Sánchez D., Alonso J. A., García-Hernández M., Martínez-Lope M. J., Martínez J. L., Mellergård A. Origin of neutron magnetic scattering in antisite-disordered Sr2FeMoO6 double perovskites // Phys. Rev. B. 2002. V. 65, Iss. 10. P. 104426 (8pp). DOI: 10.1103/PhysRevB.65.104426
26. Navarro J., Frontera C., Rubi D., Mestres N., Fontcuberta J. Aging of Sr2FeMoO6 and related oxides // Materials Research Bulletin. 2003. V. 38, Iss. 9–10. P. 1477—1486. DOI: 10.1016/S0025-5408(03)00171-5
27. Huang Y. H., Karppinen M., Yamauchi H., Goodenough J. B. Systematic studies on effects of cationic ordering on structural and magnetic properties in Sr2FeMoO6 // Phys. Rev. B. 2006. V. 73, Iss. 10. P. 104408 (5pp). DOI: 10.1103/PhysRevB.73.104408
28. Hu Y. C., Ge J. J., Ji Q., Lv B., Wu X. S., Cheng G. F. Synthesis and crystal structure of double-perovskite compound Sr2FeMoO6 // Powder Diffraction. 2010. V. 25. P. S17—S21. DOI: 10.1154/1.3478711
29. Zhang Q., Xu Z. F., Wang L. F., Gao S. H., Yuan S. J. Structural and electromagnetic properties driven by oxygen vacancy in Sr2FeMoO6-δ double perovskite // J. Alloys and Compounds. 2015. V. 649. P. 1151—1155. DOI: 10.1016/j.jallcom.2015.07.211
30. Lü M., Li J., Hao X., Yang Z., Zhou D., Meng J. Hole doping double perovskites Sr2FeMo1-xO6 (x = 0, 0.03, 0.04, 0.06) and their Mössbauer, crystal structure and magnetic properties // J. Phys.: Condens. Matter. 2008. V. 20, Iss. 17. P. 175213 (9pp). DOI: 10.1088/0953-8984/20/17/175213
31. Kumar N., Gaur A., Kotnala R. K. Stable Fe deficient Sr2Fe1-δMoO6 (0.0 < δ < 0.10) compound // J. Alloys and Compounds. 2014. V. 601. P. 245—250. DOI: 10.1016/j.jallcom.2014.02.173
32. Wang J.-F., Zhang J., Hu B., Gu Z.-B., Zhang S.-T. Tunable low-field magnetoresistance in Sr2FeMoO6 ceramics using organic glycerin to modify grain boundaries and Fe/Mo ordering // J. Phys. D: Appl. Phys. 2014. V. 47, Iss. 44. P. 445003 (5pp). DOI: 10.1088/0022-3727/47/44/445003
33. Black D. R., Windover D., Henins A., Gil D., Filliben J., Cline J. P. Certification of NIST standard reference material 640d // Power Diffraction. 2010. V. 25, Iss. 2. P. 187—190. DOI: 10.1154/1.3409482
34. Jalili H., Heinig N. F., Leung K. T. Growth evolution of laser-ablated Sr2FeMoO6 nanostructured films: Effects of substrate-induced strain on the surface morphology and film quality // J. Chem. Phys. 2010. V. 132. P. 204701 (7pp). DOI: 10.1063/1.3407453
35. Agata S., Moritomo Y., Machida A., Kato K., Nakamura A. Oxidization control of transport properties of Sr2FeMoO6+δ film // Jpn. J. Appl. Phys. 2002. V. 41. P. L688—L 690. DOI: 10.1143/JJAP.41.L688
36. Kalanda N., Turchenko V., Karpinsky D., Demyanov S., Yarmolich M., Balasoiu M., Lupu N., Tyutyunnikov S., Sobolev N. A. The role of the Fe/Mo cations ordering degree and oxygen non-stoichiometry on the formation of the crystalline and magnetic structure of Sr2FeMoO6-δ // Phys. Status Solidi B. 2018. V. 256. P. 1800278 (7pp). DOI: 10.1002/pssb.201800278
Рецензия
Для цитирования:
Артюх Е., Суханек Г. Оценка степени кристаллографического упорядочения магнитоактивных ионов в Sr2FeMoO6-δ с помощью интенсивности рентгеновского пика (101). Известия высших учебных заведений. Материалы электронной техники. 2019;22(2):135-142. https://doi.org/10.17073/1609-3577-2019-2-135-142
For citation:
Artsiukh E., Suchaneck G. Estimation of the degree of crystallographic ordering of magnetoactive ions in Sr2FeMoO6-δ by means of the intensity of the X-ray peak (101). Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(2):135-142. (In Russ.) https://doi.org/10.17073/1609-3577-2019-2-135-142