Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Influence of deposition of cobalt particles on quantum corrections to Droude conductivity in twisted CVD graphene

https://doi.org/10.17073/1609-3577-2019-2-73-83

Abstract

The use of graphene in electronics requires both an experimental study of the formation of high-quality low-resistance contacts and a deeper understanding of the mechanisms of electron carrier transport in graphene sheets and in the vicinity of metal / graphene interface. In this work, we studied the charge carrier transport in twisted CVD graphene, which was decorated with electrochemically deposited Co particles forming an ohmic contact with the graphene sheet. The temperature and magnetic field dependences of the sheet resistance R‘(T,B) in the pristine and decorated twisted graphene on silicon oxide substrate are compared. The coexistence of the negative (at magnetic fields with induction B below 1 T) and positive (B higher than 1 T) contributions to the magnetoresistive effect in both types of samples is shown. The R‘(T,B) dependences are analyzed in fraimwork of the theory of two-dimensional interference quantum corrections to Drude conductivity, taking into account the competition of the contribution from the hopping conduction mechanism. It has been shown that in the studied temperatures range (2-300 K) and magnetic fields (up to 8 T), when describing the transport of charge carriers in the studied samples, it is necessary to take into account at least three interference contributions to the conductivity: from weak localization, intervalley scattering, and breaking of pseudospin chirality, as well as warping of graphene due to thermal fluctuations.

About the Authors

A. K. Fedotov
Research Scientific Institute for Nuclear Problems of Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk, 220030

Alexander K. Fedotov:  Dr. Sci. (Phys.-Math.), Professor, Chief Researcher Laboratory of Physics of Prospective Materials



S. L. Prischepa
Belarusian State University of Informatics and Radioelectronics; National Research Nuclear University MEPhI

6 P. Brovka Str., Minsk, 220013, Belarus;

31 Kashirskoe Shosse, Moscow, 115409, Russia

Sergey L. Prischepa: Dr. Sci. (Phys.-Math.), Professor, Professor of the Information Security Department (2), Professor of the Condensed Matter Physics Department (3)



A. S. Fedotov
Belarusian State University
Belarus

4 Nezavisimosti Ave., Minsk, 220030

Alexander S. Fedotov: Cand. Sci. (Phys.-Math.), Senior Lecturer, Department of Computer Simulations



V. E. Gumiennik
Research Scientific Institute for Nuclear Problems of Belarusian State University; Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk, 220030;

4 Nezavisimosti Ave., Minsk, 220030

Vladzislaw E. Gumiennik: Student (1), Researcher Laboratory of Physics of Prospective Materials (4)



I. V. Komissarov
Belarusian State University of Informatics and Radioelectronics; National Research Nuclear University MEPhI

6 P. Brovka Str., Minsk, 220013, Belarus;

31 Kashirskoe shosse, Moscow, 115409, Russia

Ivan V. Komissarov: Cand. Sci. (Phys.-Math.), Leading Scientist of the Research Department (2), Associated Professor of the Condensed Matter Physics Department (3)



A. O. Konakov
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

14 Leningradskaya Str., Minsk, 220006

Artem O. Konakov: Junior Researcher



S. A. Vorobyova
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

14 Leningradskaya Str., Minsk, 220006

Svetlana A. Vorobyova: Cand. Sci. (Chem.), Leading Researcher



O. A. Ivashkevich
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

14 Leningradskaya Str., Minsk, 220006

Oleg A. Ivashkevich: Academician of the NASB, Dr. Sci. (Chem.), Chief Researcher



A. A. Kharchenko
Research Scientific Institute for Nuclear Problems of Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk, 220030

Andrei A. Kharchenko: Cand. Sci. (Phys.-Math.), Senior Researcher, Laboratory of Physics of Prospective Materials



References

1. Shlimak I., Zion E., Butenko A. V., Wolfson L., Richter V., Kaganovskii Yu., Sharoni A., Haran A., Naveh D., Kogan E., Kaveh M. Hopping magnetoresistance in ion irradiated monolayer graphene. Physica E: Low-dimensional Systems and Nanostructures, 2016, vol. 76, pp. 158—163. DOI: 10.1016/j.physe.2015.10.025

2. Ferrari A. C., Bonaccorso F., Fal’ko V., Novoselov K. S., Roche S., Bøggild P. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, vol. 7, no. 11, pp. 4598—4810. DOI: 10.1039/c4nr01600a

3. Isacsson A., Cummings A. W., Colombo L., Colombo L., Kinaret J. M., Roche S. Scaling properties of polycrystalline graphene: a review. 2D Mater., 2017, vol. 4, no. 1, pp. 012002-1—13. DOI: 10.1088/2053-1583/aa5147

4. Liu Y., Liu Z., Lew W. S., Wang Q. J. Temperature dependence of the electrical transport properties in few-layer graphene interconnects. Nanoscale Res. Lett., 2013, vol. 8, pp. 335—340. DOI: 10.1186/1556-276X-8-335

5. Huang P. Y., Ruiz-Vargas C. S., van der Zande A. M., Whitney W. S., Levendorf M. P., Kevek J. W., Garg S., Alden J. S., Hustedt C. J., Zhu Y., Park J., McEuen P. L., Muller D. A. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011, vol. 469, pp. 389—392. DOI: 10.1038/nature09718

6. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of grapheme. Rev. Mod. Phys., 2009, vol. 81, no. 1, pp. 109—115. DOI: 10.1103/RevModPhys.81.109

7. Wang C., Wang J., Barber A. H. Stress concentrations in nanoscale defective grapheme. AIP Advance, 2017, vol. 7, no. 11, p. 115001. DOI: 10.1063/1.4996387

8. Asshoff P. U., Sambricio J. L., Rooney A. P., Slizovskiy S., Mishchenko A., Rakowski A. M., Hill E. W., Geim A. K., Haigh S. J., Fal’ko V. I., Vera-Marun I. J., Grigorieva I. V. Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene. 2D Mater., 2017, vol. 4, no. 3, p. 031004. DOI: 10.1088/2053-1583/aa7452

9. Lebedev A. A., Agrinskaya N. V., Lebedev S. P., Mynbaeva M. G., Petrov V. N., Smirnov A. N., Strel’chuk A. M., Titkov A. N., Shamshur D. V. Low-temperature transport properties of multigraphene films grown on the SiC surface by sublimation. Semiconductors, 2011, vol. 45, pp. 623—627. DOI: 10.1134/S1063782611050186

10. Iqbal M. Z., Iqbal M. W., Lee J. H., Kim Y. S., Chun S.-H., Eom J. Spin valve effect of NiFe/graphene/NiFe junctions. Nano Research., 2013, vol. 6, pp. 373—380. DOI: 10.1007/s12274-013-0314-x

11. Ramnani P., Neupane M. R., Ge S., Balandin A. A., Lake R. K., Mulchandani A. Raman spectra of twisted CVD bilayer grapheme. Carbon, 2017, vol. 123, pp. 302—306. DOI: 10.1016/j.carbon.2017.07.064

12. De Franco V. C., Castro G. M. B., Corredor J., Mendes D., Schmidt J. E. In-situ magnetization measurements and ex-situ morphological analysis of electrodeposited cobalt onto chemical vapor deposition graphene/SiO2/Si. Carbon Lett., 2017, vol. 21, pp. 16—22. DOI: 10.5714/CL.2017.21.016

13. Altshuler B. L., Aronov A. G., Khmelnitsky D. E. Effects of electron-electron collisions with small energy transfers on quantum localisation. J. Phys. C: Solid State Phys., 1982, vol. 15, no. 36, pp. 7367—7386. DOI: 10.1088/0022-3719/15/36/018

14. Khatami Y., Li H., Xu C., Banerjee K. Metal-to-multilayer-graphene contact. Part I: Contact resistance modeling. IEEE Trans. Electron. Devices, 2012, vol. 59, no. 9, pp. 2444—2452. DOI: 10.1109/TED.2012.2205256

15. Shklovskii B. I., Efros A. L. Electronic properties of doped semiconductors. Springer Series in Solid-State Sciences. Vol. 45. Berlin; Heidelberg: Springer-Verlag, 1984, 388 p. DOI: 10.1007/978-3-662-02403-4

16. Ruhl G., Wittmann S., Koenig M., Neumaier D. The integration of graphene into microelectronic devices. Beilstein J. Nanotechnol., 2017, vol. 8, pp. 1056—1064. DOI: 10.3762/bjnano.8.107

17. Shklovskii B. I. Hopping conductivity of semiconductors in strong magnetic fields. JETP, 1972, vol. 34, no. 5, pp. 1084 —1088. URL: http://www.jetp.ac.ru/cgi-bin/dn/e_034_05_1084.pdf

18. Bayev V. G., Fedotova J. A., Kasiuk J. V., Vorobyova S. A., Sohor A. A., Komissarov I. V., Kovalchuk N. G., Prischepa S. L., Kargin N. I., Andrulevičius M., Przewoznik J., Kapusta Cz., Ivashkevich O. A., Tyutyunnikov S. I., Kolobylina N. N., Guryeva P. V. CVD graphene sheets electrochemically decorated with «core-shell» Co/CoO nanoparticles. Appl. Surf. Sci., 2018, vol. 440, pp. 1252—1260. DOI: 10.1016/j.apsusc.2018.01.245

19. Mikoshiba N. Weak-field magnetoresistance of hopping conduction in simple semiconductors. J. Phys. Chem. Solids, 1963, vol. 24, no. 3, pp. 341—346. DOI: 10.1016/0022-3697(63)90192-6

20. Tuček J., Sofer Z., Bouša D., Pumera M., Holá K., Malá A., Poláková K., Havrdová M., Čépe K., Tomanec O., Zbořil R. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix. Nature Commun., 2016, vol. 7, p. 12879. DOI: 10.1038/ncomms12879

21. Bayev V., Fedotova J., Humennik U., Vorobyova S., Konakow A., Fedotov A., Svito I., Rybin M., Obraztsova E. Modification of electric transport properties of CVD graphene by electrochemical deposition of cobalt nanoparticles. Intern. J. Nanoscience, 2019, vol. 18, no. 03n04, pp. 1940041-1—4. DOI: 10.1142/S0219581X19400416

22. Zhidkov I. S., Skorikov N. A., Korolev A. V., Kukharenko A. I., Kurmaev E. Z., Fedorov V. E., Cholakh S. O. Electronic structure and magnetic properties of graphene/Co composite. Сarbon, 2015, vol. 91, pp. 298—303. DOI: 10.1016/j.carbon.2015.04.086

23. Solin S. A., Tineke Thio, Hines D. R., Heremans J. J. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science, 2000, vol. 289, no. 5484, pp. 1530—1532. DOI: 10.1126/science.289.5484.1530

24. Sokolik A. A., Zabolotskiy A. D., Lozovik Yu. E. Many-body effects of Coulomb interaction on Landau levels in graphene. Phys. Rev. B, 2017, vol. 95, no. 12, pp. 125402-1—4. DOI: 10.1103/PhysRevB.95.125402

25. Komissarov I. V., Kovalchuk N. G., Labunov V. A., Girel K. V., Korolik O. V., Tivanov M. S., Lazauskas A., Andrulevičius M., Tamulevičius T., Grigaliūnas V., Meškinis Š., Tamulevičius S., Prischepa S. L. Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor. Beilstein J. Nanotechnol., 2017, vol. 8, pp. 145—158. DOI: 10.3762/bjnano.8.15

26. Majumder C., Bhattacharya S., Saha S. K. Anomalous large negative magnetoresistance in transition-metal decorated graphene: Evidence for electron-hole puddles. Phys. Rev. B, 2019, vol. 99, no. 4, pp. 045408-1—13. DOI: 10.1103/PhysRevB.99.045408

27. Kovalchuk N. G., Nigerish K. A., Mikhalik M. M., Kargin N. I., Komissarov I. V., Prischepa S. L. Possibility of determining the graphene doping level using Raman spectra. J. Appl. Spectrosc., 2018, vol. 84, pp. 995—998. DOI: 10.1007/s10812-018-0576-x

28. Fedotov А. K., Prischepa S. L., Fedotova J. A., Bayev V. G., Ronassi A. A., Komissarov I. V., Kovalchuk N. G., Vorobyova S. A., Ivashkevich O. A. Electrical conductivity and magnetoresistance in twisted graphene electrochemically decorated with Co particles. Physica E: Low-dimensional Systems and Nanostructures, 2020, vol. 117, p. 113790. DOI: 10.1016/j.physe.2019.113790

29. Chung T.-F., Xu Y., Chen Y. P. Transport measurements in twisted bilayer graphene: Electron-phonon coupling and Landau level crossing. Phys. Rev. B, 2018, vol. 98, no. 3, p. 035425. DOI: 10.1103/PhysRevB.98.035425

30. Jobst J., Waldmann D., Gornyi I. V., Mirlin A. D., Weber H. B. Electron-electron interaction in the magnetoresistance of graphene. Phys. Rev. Lett., 2012, vol. 108, no. 10, p. 106601. DOI: 10.1103/PhysRevLett.108.106601

31. Shih C.-J., Vijayaraghavan A., Krishnan R., Sharma R., Han J.-H., Ham M.-H., Jin Z., Lin S., Paulus G. L. C., Reuel N. F., Wang Q. H., Blankschtein D., Strano M. S. Bi- and trilayer graphene solutions. Nat. Nanotechnol., 2011, vol. 6, no. 7, pp. 439—445. DOI: 10.1038/nnano.2011.94

32. Morozov S. V., Novoselov K. S., Katsnelson M. I., Schedin F., Ponomarenko L. A., Jiang D., Geim A. K. Strong suppression of weak localization in graphene. Phys. Rev. Lett., 2006, vol. 97, no. 1, pp. 016801-1—4. DOI: 10.1103/PhysRevLett.97.016801

33. Pudalov V. M. Metallic conduction, apparent metal-insulator transition and related phenomena in two-dimensional electron liquid. In: Proceedings of the International School of Physics «Enrico Fermi». Vol. 157: The Electron Liquid Paradigm in Condensed Matter Physics. IOS Press, 2004, pp. 335—356. DOI: 10.3254/978-1-61499-013-0-335

34. Gorbachev R. V., Tikhonenko F. V., Mayorov A. S., Horsell D. W., Savchenko A. K. Weak localization in bilayer grapheme. Phys. Rev. Lett., 2007, vol. 98, no. 17, pp. 176805-1—4. DOI: 10.1103/PhysRevLett.98.176805

35. Tikhonenko F. V., Horsell D. W., Gorbachev R. V., Savchenko A. K. Weak localization in graphene flakes. Phys. Rev. Lett., 2008, vol. 100, no. 5, p. 056802. DOI: 10.1103/PhysRevLett.100.056802

36. Kechedzhi K., McCann E., Fal’ko V. I., Suzuura H., Ando T., Altshuler B. L. Weak localization in monolayer and bilayer grapheme. Eur. Phys. J. Spec., 2007, vol. 148, pp. 39—54. DOI: 10.1140/epjst/e2007-00224-6

37. McCann E., Kechedzhi K., Fal’ko V. I., Suzuura H., Ando T., Altshuler B. L. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett., 2006, vol. 97, no. 14, p. 146805. DOI: 10.1103/PhysRevLett.97.146805

38. Kechedzhi K., Fal’ko V. I., McCann E., Altshuler B. L. Influence of trigonal warping on interference effects in bilayer graphene. Phys. Rev. Lett., 2007, vol. 98, no. 17, p. 176806. DOI: 10.1103/PhysRevLett.98.176806

39. Shlimak I., Butenko A. V., Zion E., Richter V., Kaganovski Yu., Wolfson L., Sharoni A., Haran A., Naveh D., Kogan E., Kaveh D. Structure and electron transport in irradiated monolayer graphene. In: Future Trends in Electronics: Journey into Unknown. John Wiley & Sons, Inc.: Hoboken (New Jersey), 2016, pp. 217—231. DOI: 10.1002/9781119069225.ch2-9

40. Tikhonenko F. V., Kozikov A. A., Savchenko A. K., Gorbache R. V. Transition between electron localization and antilocalization in graphene. Phys. Rev. Lett., 2009, vol. 103, no. 22, pp. 226801-1—4. DOI: 10.1103/PhysRevLett.103.226801

41. Shlimak I., Haran A., Zion E., Havdala T., Kaganovskii Yu., Butenko A. V., Wolfson L., Richter V., Naveh D., Sharoni A., Kogan E., Kaveh M. Raman scattering and electrical resistance of highly disordered graphene. Phys. Rev., 2015, vol. 91, no. 4, pp. 045414-1—4. DOI: 10.1103/PhysRevB.91.045414

42. Araujo E. N. D., Brant J. C., Archanjo B. S., Medeiros-Ribeiro G., Alves E. S. Quantum corrections to conductivity in graphene with vacancies. Physica E: Low-dimensional Systems and Nanostructures, 2018, vol. 100, pp. 40—44. DOI: 10.1016/j.physe.2018.02.025

43. Shlimak I., Zion E., Butenko A. V., Wolfson L., Richter V., Kaganovskii Yu., Sharoni A., Haran A., Naveh D., Kogan E., Kaveh M. Hopping magnetoresistance in ion irradiated monolayer graphene. Physica E: Low-dimensional Systems and Nanostructures, 2016, vol. 76, pp. 158—163. DOI: 10.1016/j.physe.2015.10.025

44. Bonch-Bruevich V. L., Kalashnikov S. G. Semiconductor physics. Moscow: Nauka, 1977. 674 p. (In Russ.)

45. Isacsson A., Cummings A. W., Colombo L., Colombo L., Kinaret J. M., Roche S. Scaling properties of polycrystalline graphene: a review. 2D Mater., 2017, vol. 4, no. 1, pp. 012002-1—13. DOI: 10.1088/2053-1583/aa5147

46. Huang P. Y., Ruiz-Vargas C. S., van der Zande A. M., Whitney W. S., Levendorf M. P., Kevek J. W., Garg S., Alden J. S., Hustedt C. J., Zhu Y., Park J., McEuen P. L., Muller D. A. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011, vol. 469, pp. 389—392. DOI: 10.1038/nature09718

47. Wang C., Wang J., Barber A. H. Stress concentrations in nanoscale defective grapheme. AIP Advance, 2017, vol. 7, no. 11, p. 115001. DOI: 10.1063/1.4996387

48. Lebedev A. A., Agrinskaya N. V., Lebedev S. P., Mynbaeva M. G., Petrov V. N., Smirnov A. N., Strel’chuk A. M., Titkov A. N., Shamshur D. V. Low-temperature transport properties of multigraphene films grown on the SiC surface by sublimation. Semiconductors, 2011, vol. 45, pp. 623—627. DOI: 10.1134/S1063782611050186

49. Ramnani P., Neupane M. R., Ge S., Balandin A. A., Lake R. K., Mulchandani A. Raman spectra of twisted CVD bilayer grapheme. Carbon, 2017, vol. 123, pp. 302—306. DOI: 10.1016/j.carbon.2017.07.064

50. Altshuler B. L., Aronov A. G., Khmelnitsky D. E. Effects of electron-electron collisions with small energy transfers on quantum localisation. J. Phys. C: Solid State Phys., 1982, vol. 15, no. 36, pp. 7367—7386. DOI: 10.1088/0022-3719/15/36/018

51. Shklovskii B. I., Efros A. L. Electronic properties of doped semiconductors. Springer Series in Solid-State Sciences. Vol. 45. Berlin; Heidelberg: Springer-Verlag, 1984, 388 p. DOI: 10.1007/978-3-662-02403-4

52. Shklovskii B. I. Hopping conductivity of semiconductors in strong magnetic fields. JETP, 1972, vol. 34, no. 5, pp. 1084 —1088. URL: http://www.jetp.ac.ru/cgi-bin/dn/e_034_05_1084.pdf

53. Mikoshiba N. Weak-field magnetoresistance of hopping conduction in simple semiconductors. J. Phys. Chem. Solids, 1963, vol. 24, no. 3, pp. 341—346. DOI: 10.1016/0022-3697(63)90192-6

54. Bayev V., Fedotova J., Humennik U., Vorobyova S., Konakow A., Fedotov A., Svito I., Rybin M., Obraztsova E. Modification of electric transport properties of CVD graphene by electrochemical deposition of cobalt nanoparticles. Intern. J. Nanoscience, 2019, vol. 18, no. 03n04, pp. 1940041-1—4. DOI: 10.1142/S0219581X19400416

55. Solin S. A., Tineke Thio, Hines D. R., Heremans J. J. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science, 2000, vol. 289, no. 5484, pp. 1530—1532. DOI: 10.1126/science.289.5484.1530

56. Komissarov I. V., Kovalchuk N. G., Labunov V. A., Girel K. V., Korolik O. V., Tivanov M. S., Lazauskas A., Andrulevičius M., Tamulevičius T., Grigaliūnas V., Meškinis Š., Tamulevičius S., Prischepa S. L. Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor. Beilstein J. Nanotechnol., 2017, vol. 8, pp. 145—158. DOI: 10.3762/bjnano.8.15

57. Kovalchuk N. G., Nigerish K. A., Mikhalik M. M., Kargin N. I., Komissarov I. V., Prischepa S. L. Possibility of determining the graphene doping level using Raman spectra. J. Appl. Spectrosc., 2018, vol. 84, pp. 995—998. DOI: 10.1007/s10812-018-0576-x

58. Chung T.-F., Xu Y., Chen Y. P. Transport measurements in twisted bilayer graphene: Electron-phonon coupling and Landau level crossing. Phys. Rev. B, 2018, vol. 98, no. 3, p. 035425. DOI: 10.1103/PhysRevB.98.035425

59. Shih C.-J., Vijayaraghavan A., Krishnan R., Sharma R., Han J.-H., Ham M.-H., Jin Z., Lin S., Paulus G. L. C., Reuel N. F., Wang Q. H., Blankschtein D., Strano M. S. Bi- and trilayer graphene solutions. Nat. Nanotechnol., 2011, vol. 6, no. 7, pp. 439—445. DOI: 10.1038/nnano.2011.94

60. Pudalov V. M. Metallic conduction, apparent metal-insulator transition and related phenomena in two-dimensional electron liquid. In: Proceedings of the International School of Physics «Enrico Fermi». Vol. 157: The Electron Liquid Paradigm in Condensed Matter Physics. IOS Press, 2004, pp. 335—356. DOI: 10.3254/978-1-61499-013-0-335

61. Tikhonenko F. V., Horsell D. W., Gorbachev R. V., Savchenko A. K. Weak localization in graphene flakes. Phys. Rev. Lett., 2008, vol. 100, no. 5, p. 056802. DOI: 10.1103/PhysRevLett.100.056802

62. McCann E., Kechedzhi K., Fal’ko V. I., Suzuura H., Ando T., Altshuler B. L. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett., 2006, vol. 97, no. 14, p. 146805. DOI: 10.1103/PhysRevLett.97.146805

63. Kechedzhi K., Fal’ko V. I., McCann E., Altshuler B. L. Influence of trigonal warping on interference effects in bilayer graphene. Phys. Rev. Lett., 2007, vol. 98, no. 17, p. 176806. DOI: 10.1103/PhysRevLett.98.176806

64. Tikhonenko F. V., Kozikov A. A., Savchenko A. K., Gorbache R. V. Transition between electron localization and antilocalization in graphene. Phys. Rev. Lett., 2009, vol. 103, no. 22, pp. 226801-1—4. DOI: 10.1103/PhysRevLett.103.226801

65. Araujo E. N. D., Brant J. C., Archanjo B. S., Medeiros-Ribeiro G., Alves E. S. Quantum corrections to conductivity in graphene with vacancies. Physica E: Low-dimensional Systems and Nanostructures, 2018, vol. 100, pp. 40—44. DOI: 10.1016/j.physe.2018.02.025

66. Bonch-Bruevich V. L., Kalashnikov S. G. Semiconductor physics. Moscow: Nauka, 1977. 674 p. (In Russ.)


Review

For citations:


Fedotov A.K., Prischepa S.L., Fedotov A.S., Gumiennik V.E., Komissarov I.V., Konakov A.O., Vorobyova S.A., Ivashkevich O.A., Kharchenko A.A. Influence of deposition of cobalt particles on quantum corrections to Droude conductivity in twisted CVD graphene. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(2):73-83. (In Russ.) https://doi.org/10.17073/1609-3577-2019-2-73-83

Views: 988


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)