Влияние осаждения частиц кобальта на квантовые поправки к проводимости Друде в твистированном CVD графене
https://doi.org/10.17073/1609-3577-2019-2-73-83
Аннотация
Об авторах
А. К. ФедотовБеларусь
Федотов Александр Кириллович — д-р физ.-мат. наук., профессор, главный научный сотрудник лаборатории физики перспективных материалов
С. Л. Прищепа
Прищепа Сергей Леонидович — д-р физ.-мат. наук., профессор, профессор кафедры защиты информации
А. С. Федотов
Беларусь
Федотов Александр Сергеевич — канд. физ.-мат. наук, ст. преподаватель кафедры компьютерного моделирования
В Э. Гуменник
Беларусь
Гуменник Владислав Эдмундович — студент
И. В. Комиссаров
Комиссаров Иван Владимирович — канд. физ.-мат. наук, ведущий научный сотрудник
А. О. Конаков
Беларусь
Конаков Артем Олегович — младший научный сотрудник
С. А. Воробьева
Беларусь
Воробьева Светлана Александровна — канд. хим. наук, ведущий научный сотрудник
О. А. Ивашкевич
Беларусь
Ивашкевич Олег Анатольевич — академик НАН Беларуси, доктор хим. наук, главный научный сотрудник лаборатории химии конденсированных сред
А. А. Харченко
Беларусь
Харченко Андрей Андреевич — канд. физ.-мат. наук, старший научный сотрудник лаборатории физики перспективных материалов
Список литературы
1. Ferrari A. C., Bonaccorso F., Fal’ko V., Novoselov K. S., Roche S., Bøggild P. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems // Nanoscale. 2015. V. 7, N 11. P. 4598—4810. DOI: 10.1039/c4nr01600a
2. Liu Y., Liu Z., Lew W. S., Wang Q. J. Temperature dependence of the electrical transport properties in few-layer graphene interconnects // Nanoscale Res. Lett. 2013. V. 8. P. 335—340. DOI: 10.1186/1556-276X-8-335
3. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of grapheme // Rev. Mod. Phys. 2009. V. 81, N 1. P. 109—115. DOI: 10.1103/RevModPhys.81.109
4. Asshoff P. U., Sambricio J. L., Rooney A. P., Slizovskiy S., Mishchenko A., Rakowski A. M., Hill E. W., Geim A. K., Haigh S. J., Fal’ko V. I., Vera-Marun I. J., Grigorieva I. V. Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene // 2D Mater. 2017. V. 4, N 3. P. 031004. DOI: 10.1088/2053-1583/aa7452
5. Iqbal M. Z., Iqbal M. W., Lee J. H., Kim Y. S., Chun S.-H., Eom J. Spin valve effect of NiFe/graphene/NiFe junctions // Nano Research. 2013. V. 6. P. 373—380. DOI: 10.1007/s12274-013-0314-x
6. De Franco V. C., Castro G. M. B., Corredor J., Mendes D., Schmidt J. E. In-situ magnetization measurements and ex-situ morphological analysis of electrodeposited cobalt onto chemical vapor deposition graphene/SiO2/Si // Carbon Lett. 2017. V. 21. P. 16—22. DOI: 10.5714/CL.2017.21.016
7. Khatami Y., Li H., Xu C., Banerjee K. Metal-to-multilayer-graphene contact. Part I: Contact resistance modeling // IEEE Trans. Electron. Devices. 2012. V. 59, Iss. 9. P. 2444—2452. DOI: 10.1109/TED.2012.2205256
8. Ruhl G., Wittmann S., Koenig M., Neumaier D. The integration of graphene into microelectronic devices // Beilstein J. Nanotechnol. 2017. V. 8. P. 1056—1064. DOI: 10.3762/bjnano.8.107
9. Bayev V. G., Fedotova J. A., Kasiuk J. V., Vorobyova S. A., Sohor A. A., Komissarov I. V., Kovalchuk N. G., Prischepa S. L., Kargin N. I., Andrulevičius M., Przewoznik J., Kapusta Cz., Ivashkevich O. A., Tyutyunnikov S. I., Kolobylina N. N., Guryeva P. V. CVD graphene sheets electrochemically decorated with «core-shell» Co/CoO nanoparticles // Appl. Surf. Sci. 2018. V. 440. P. 1252—1260. DOI: 10.1016/j.apsusc.2018.01.245
10. Tuček J., Sofer Z., Bouša D., Pumera M., Holá K., Malá A., Poláková K., Havrdová M., Čépe K., Tomanec O., Zbořil R. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix // Nature Commun. 2016. V. 7. P. 12879. DOI: 10.1038/ncomms12879
11. Zhidkov I. S., Skorikov N. A., Korolev A. V., Kukharenko A. I., Kurmaev E. Z., Fedorov V. E., Cholakh S. O. Electronic structure and magnetic properties of graphene/Co composite // Сarbon. 2015. V. 91. P. 298—303. DOI: 10.1016/j.carbon.2015.04.086
12. Sokolik A. A., Zabolotskiy A. D., Lozovik Yu. E. Many-body effects of Coulomb interaction on Landau levels in graphene // Phys. Rev. B. 2017. V. 95, Iss. 12. P. 125402-1—4. DOI: 10.1103/PhysRevB.95.125402
13. Majumder C., Bhattacharya S., Saha S. K. Anomalous large negative magnetoresistance in transition-metal decorated graphene: Evidence for electron-hole puddles // Phys. Rev. B. 2019. V. 99, Iss. 4. P. 045408-1—13. DOI: 10.1103/PhysRevB.99.045408
14. Fedotov А. K., Prischepa S. L., Fedotova J. A., Bayev V. G., Ronassi A. A., Komissarov I. V., Kovalchuk N. G., Vorobyova S. A., Ivashkevich O. A. Electrical conductivity and magnetoresistance in twisted graphene electrochemically decorated with Co particles // Physica E: Low-dimensional Systems and Nanostructures. 2020. V. 117. P. 113790. DOI: 10.1016/j.physe.2019.113790
15. Jobst J., Waldmann D., Gornyi I. V., Mirlin A. D., Weber H. B. Electron-electron interaction in the magnetoresistance of graphene // Phys. Rev. Lett. 2012. V. 108, Iss. 10. P. 106601. DOI: 10.1103/PhysRevLett.108.106601
16. Morozov S. V., Novoselov K. S., Katsnelson M. I., Schedin F., Ponomarenko L. A., Jiang D., Geim A. K. Strong suppression of weak localization in graphene // Phys. Rev. Lett. 2006. V. 97, Iss. 1. P. 016801-1—4. DOI: 10.1103/PhysRevLett.97.016801
17. Gorbachev R. V., Tikhonenko F. V., Mayorov A. S., Horsell D. W., Savchenko A. K. Weak localization in bilayer grapheme // Phys. Rev. Lett. 2007. V. 98, Iss. 17. P. 176805-1—4. DOI: 10.1103/PhysRevLett.98.176805
18. Kechedzhi K., McCann E., Fal’ko V. I., Suzuura H., Ando T., Altshuler B. L. Weak localization in monolayer and bilayer grapheme // Eur. Phys. J. Spec. 2007. V. 148. P. 39—54. DOI: 10.1140/epjst/e2007-00224-6
19. Shlimak I., Butenko A. V., Zion E., Richter V., Kaganovski Yu., Wolfson L., Sharoni A., Haran A., Naveh D., Kogan E., Kaveh D. Structure and electron transport in irradiated monolayer graphene / In: Future Trends in Electronics: Journey into Unknown. John Wiley & Sons, Inc.: Hoboken (New Jersey), 2016. P. 217—231. DOI: 10.1002/9781119069225.ch2-9
20. Shlimak I., Haran A., Zion E., Havdala T., Kaganovskii Yu., Butenko A. V., Wolfson L., Richter V., Naveh D., Sharoni A., Kogan E., Kaveh M. Raman scattering and electrical resistance of highly disordered graphene // Phys. Rev. 2015. V. 91, Iss. 4. P. 045414-1—4. DOI: 10.1103/PhysRevB.91.045414
21. Shlimak I., Zion E., Butenko A. V., Wolfson L., Richter V., Kaganovskii Yu., Sharoni A., Haran A., Naveh D., Kogan E., Kaveh M. Hopping magnetoresistance in ion irradiated monolayer graphene // Physica E: Low-dimensional Systems and Nanostructures. 2016. V. 76. P. 158—163. DOI: 10.1016/j.physe.2015.10.025
22. Isacsson A., Cummings A. W., Colombo L., Colombo L., Kinaret J. M., Roche S. Scaling properties of polycrystalline graphene: a review // 2D Mater. 2017. V. 4, Iss. 1. P. 012002-1—13. DOI: 10.1088/2053-1583/aa5147
23. Huang P. Y., Ruiz-Vargas C. S., van der Zande A. M., Whitney W. S., Levendorf M. P., Kevek J. W., Garg S., Alden J. S., Hustedt C. J., Zhu Y., Park J., McEuen P. L., Muller D. A. Grains and grain boundaries in single-layer graphene atomic patchwork quilts // Nature. 2011. V. 469. P. 389—392. DOI: 10.1038/nature09718
24. Wang C., Wang J., Barber A. H. Stress concentrations in nanoscale defective grapheme // AIP Advance. 2017. V. 7, Iss. 11. P. 115001. DOI: 10.1063/1.4996387
25. Lebedev A. A., Agrinskaya N. V., Lebedev S. P., Mynbaeva M. G., Petrov V. N., Smirnov A. N., Strel’chuk A. M., Titkov A. N., Shamshur D. V. Low-temperature transport properties of multigraphene films grown on the SiC surface by sublimation // Semiconductors. 2011. V. 45. P. 623—627. DOI: 10.1134/S1063782611050186
26. Ramnani P., Neupane M. R., Ge S., Balandin A. A., Lake R. K., Mulchandani A. Raman spectra of twisted CVD bilayer grapheme // Carbon. 2017. V. 123. P. 302—306. DOI: 10.1016/j.carbon.2017.07.064
27. Altshuler B. L., Aronov A. G., Khmelnitsky D. E. Effects of electron-electron collisions with small energy transfers on quantum localisation // J. Phys. C: Solid State Phys. 1982. V. 15, N 36. P. 7367—7386. DOI: 10.1088/0022-3719/15/36/018
28. Shklovskii B. I., Efros A. L. Electronic properties of doped semiconductors. Springer Series in Solid-State Sciences. V. 45. Berlin; Heidelberg: Springer-Verlag, 1984. 388 p. DOI: 10.1007/978-3-662-02403-4
29. Shklovskii B. I. Hopping conductivity of semiconductors in strong magnetic fields // JETP. 1972. V. 34, N 5. P. 1084 —1088. URL: http://www.jetp.ac.ru/cgi-bin/dn/e_034_05_1084.pdf
30. Mikoshiba N. Weak-field magnetoresistance of hopping conduction in simple semiconductors // J. Phys. Chem. Solids. 1963. V. 24, Iss. 3. P. 341—346. DOI: 10.1016/0022-3697(63)90192-6
31. Bayev V., Fedotova J., Humennik U., Vorobyova S., Konakow A., Fedotov A., Svito I., Rybin M., Obraztsova E. Modification of electric transport properties of CVD graphene by electrochemical deposition of cobalt nanoparticles // Intern. J. Nanoscience. 2019. V. 18, N 03n04. P. 1940041-1—4. DOI: 10.1142/S0219581X19400416
32. Solin S. A., Tineke Thio, Hines D. R., Heremans J. J. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors // Science. 2000. V. 289, Iss. 5484. P. 1530—1532. DOI: 10.1126/science.289.5484.1530
33. Komissarov I. V., Kovalchuk N. G., Labunov V. A., Girel K. V., Korolik O. V., Tivanov M. S., Lazauskas A., Andrulevičius M., Tamulevičius T., Grigaliūnas V., Meškinis Š., Tamulevičius S., Prischepa S. L. Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor // Beilstein J. Nanotechnol. 2017. V. 8. P. 145—158. DOI: 10.3762/bjnano.8.15
34. Kovalchuk N. G., Nigerish K. A., Mikhalik M. M., Kargin N. I., Komissarov I. V., Prischepa S. L. Possibility of determining the graphene doping level using Raman spectra // J. Appl. Spectrosc. 2018. V. 84. P. 995—998. DOI: 10.1007/s10812-018-0576-x
35. Chung T.-F., Xu Y., Chen Y. P. Transport measurements in twisted bilayer graphene: Electron-phonon coupling and Landau level crossing // Phys. Rev. B. 2018. V. 98, Iss. 3. P. 035425. DOI: 10.1103/PhysRevB.98.035425
36. Shih C.-J., Vijayaraghavan A., Krishnan R., Sharma R., Han J.-H., Ham M.-H., Jin Z., Lin S., Paulus G. L. C., Reuel N. F., Wang Q. H., Blankschtein D., Strano M. S. Bi- and trilayer graphene solutions // Nat. Nanotechnol. 2011. V. 6, Iss. 7. P. 439—445. DOI: 10.1038/nnano.2011.94
37. Pudalov V. M. Metallic conduction, apparent metal-insulator transition and related phenomena in two-dimensional electron liquid / In: Proceedings of the International School of Physics «Enrico Fermi». V. 157: The Electron Liquid Paradigm in Condensed Matter Physics. IOS Press, 2004. P. 335—356. DOI: 10.3254/978-1-61499-013-0-335
38. Tikhonenko F. V., Horsell D. W., Gorbachev R. V., Savchenko A. K. Weak localization in graphene flakes // Phys. Rev. Lett. 2008. V. 100, Iss. 5. P. 056802. DOI: 10.1103/PhysRevLett.100.056802
39. McCann E., Kechedzhi K., Fal’ko V. I., Suzuura H., Ando T., Altshuler B. L. Weak-localization magnetoresistance and valley symmetry in graphene // Phys. Rev. Lett. 2006. V. 97, Iss. 14. P. 146805. DOI: 10.1103/PhysRevLett.97.146805
40. Kechedzhi K., Fal’ko V. I., McCann E., Altshuler B. L. Influence of trigonal warping on interference effects in bilayer graphene // Phys. Rev. Lett. 2007. V. 98, Iss. 17. P. 176806. DOI: 10.1103/PhysRevLett.98.176806
41. Tikhonenko F. V., Kozikov A. A., Savchenko A. K., Gorbache R. V. Transition between electron localization and antilocalization in graphene // Phys. Rev. Lett. 2009. V. 103, Iss. 22. P. 226801-1—4. DOI: 10.1103/PhysRevLett.103.226801
42. Araujo E. N. D., Brant J. C., Archanjo B. S., Medeiros-Ribeiro G., Alves E. S. Quantum corrections to conductivity in graphene with vacancies // Physica E: Low-dimensional Systems and Nanostructures. 2018. V. 100. P. 40—44. DOI: 10.1016/j.physe.2018.02.025
43. Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. М.: Наука, 1977. 672 с.
Рецензия
Для цитирования:
Федотов А.К., Прищепа С.Л., Федотов А.С., Гуменник В.Э., Комиссаров И.В., Конаков А.О., Воробьева С.А., Ивашкевич О.А., Харченко А.А. Влияние осаждения частиц кобальта на квантовые поправки к проводимости Друде в твистированном CVD графене. Известия высших учебных заведений. Материалы электронной техники. 2019;22(2):73-83. https://doi.org/10.17073/1609-3577-2019-2-73-83
For citation:
Fedotov A.K., Prischepa S.L., Fedotov A.S., Gumiennik V.E., Komissarov I.V., Konakov A.O., Vorobyova S.A., Ivashkevich O.A., Kharchenko A.A. Influence of deposition of cobalt particles on quantum corrections to Droude conductivity in twisted CVD graphene. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(2):73-83. (In Russ.) https://doi.org/10.17073/1609-3577-2019-2-73-83