Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Phase transformation during Sr2CrMoO6–δ synthesis

https://doi.org/10.17073/1609-3577-2019-3-149-157

Abstract

The sequence of phase transformations in the process of crystallization of the Sr2CrMoO6 by the solid-phase technique from a stoichiometric mixture of simple oxides SrCO3 + 0.5Cr2O3 + MoO, has been investigated. It was determined that the synthesis of the strontium chrome-molybdate proceeds through a series of sequential-parallel stages. By means of the differential thermal analysis and thermogravimetric analysis data, it has been established that five clearly expressed endothermal effects were observed in the temperature range 300—1300 K. It was found that during the studies of the phase transformations sequence in the process of the double perovskite synthesis, SrCrO3, SrMoO4 and Sr2CrO4 are the main concomitant compounds. Herewith, it has been observed that with the annealing temperature increase from 300 to 1270 K, the complex compounds SrCrO4, SrCrO3 (350—550 K) and SrMoO4, Sr2CrO4 (600—750 K) are emerging initially and practically simultaneously. It has been revealed with a subsequent temperature increase that in the temperature range 940—1100 K, the SrMoO4, Sr2CrO4 and SrCrO3 phase concentration dramatically drops with the emerging and growth of the Sr2CrMoO6-δ double perovskite. With that in the range up to 1120—1190 K, the main XRD reflexes intensity for the SrCrO3 and SrMoO4 lowers substantially, and their content in the samples at 1170 К is no more than 7,9 %. During a consideration of the derivative of the SrCrO3, SrMoO4 and Sr2CrO4 phase transformation degree (|(dα/dt)|mах), at which their crystallization rates are maximal, it has been determined that |(dα/dt)|mах for the Sr2CrO4 corresponds to the maximal temperature 1045 K, which indicates the presence of considerable kinetic difficulties at the formation of the Sr2CrO4 phase. Thereafter this phase does not disappear and at its appearance the slowing down of the double perovskite growth takes place. On the base of investigations of the phase transformations dynamics for the obtaining of the single-phase Sr2CrMoO6-δ compound with the superstructural ordering of the Cr/Mo cations and improved magnetic characteristics, the SrCrO3 and SrMoO4 precursors were used with combined heating modes.

About the Authors

N. A. Kalanda
Scientific-Practical Materials Research Centre of the NAS of Belarus, 19 P. Brovka Str., Minsk 220072, Belarus
Belarus
Nikolay A. Kalanda: Cand. Sci. (Phys.-Math.), Leading Researcher


A. L. Gurskii
Belarusian State University of Informatics and Radioelectronics, 6 P. Brovka Str., Minsk 220013, Belarus
Belarus
Alexander L. Gurskii: Dr. Sci. (Eng.), Professor


M. V. Yarmolich
Scientific-Practical Materials Research Centre of the NAS of Belarus, 19 P. Brovka Str., Minsk 220072, Belarus
Belarus
Marta V. Yarmolich: Cand. Sci. (Phys.-Math.), Senior Researcher


I. A. Bobrikov
I.M. Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Moscow Region, Dubna 141980, Russia
Russian Federation
Ivan А. Bobrikov: Cand. Sci. (Phys.-Math.), Senior Researcher


O. Yu. Ivanshina
I.M. Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Moscow Region, Dubna 141980, Russia
Russian Federation
Olga Yu. Ivanshina: Cand. Sci. (Chem.), Researcher


S. V. Sumnikov
I.M. Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Moscow Region, Dubna 141980, Russia
Russian Federation
Sergey V. Sumnikov: Engineer


A. V. Petrov
Scientific-Practical Materials Research Centre of the NAS of Belarus, 19 P. Brovka Str., Minsk 220072, Belarus
Belarus
Alexander V. Petrov: Cand. Sci. (Phys.-Math.) Senior Researcher


F. Maia
Smallmatek - Small Materials and Technologies, Lda., Rua dos Canhas, Aveiro 3810-075, Portugal
Portugal
Frederico Maia: PhD, R&D Director/Diretor de I&D


A. L. Zhaludkevich
Scientific-Practical Materials Research Centre of the NAS of Belarus, 19 P. Brovka Str., Minsk 220072, Belarus
Belarus
Aliaksandr L. Zhaludkevich: Researcher


S. E. Demyanov
Scientific-Practical Materials Research Centre of the NAS of Belarus, 19 P. Brovka Str., Minsk 220072, Belarus
Belarus
Sergey E. Demyanov: Dr. Sci. (Phys.-Math.), Head of the Department of Cryogenic Research


References

1. Serrate D., De Teresa J. M., Ibarra M. R. Double perovskites with ferromagnetism above room temperature. J. Phys.: Condens. Matter, 2007, vol. 19, no. 2, p. 023201. DOI: 10.1088/0953-8984/19/2/023201

2. Rubi D., Frontera C., Roig A., Nogués J., Muñoz J. S., Fontcuberta J. A new approach to increase the Curie temperature of Fe–Mo double perovskites. Materials Science and Engineering: B, 2006, vol. 126, no. 2–3, pp. 139—142. DOI: 10.1016/j.mseb.2005.09.013

3. Topwal D., Sarma D. D., Kato H., Tokura Y., Avignon M. Structural and magnetic properties of Sr2Fe1+xMo1-xO6 (-1≤x≤0.25). Phys. Rev. B, 2006, vol. 73, no. 9, pp. 0944191-1—0944191-1. DOI: 10.1103/PhysRevB.73.094419

4. Kovalev L. V., Yarmolich M. V., Petrova M. L., Ustarroz J., Terryn H. A., Kalanda N. A., Zheludkevich M. L. Double perovskite Sr2FeMoO6 films prepared by electrophoretic deposition. ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 21, pp. 19201—19206. DOI: 10.1021/am5052125

5. Fontcuberta J., Balcells L., Bibes M., Navarro J., Frontera C., Santiso J., Fraxedas J., Martínez B., Nadolski S., Wojcik M., Jedryka E., Casanove M. J. Magnetoresistive oxides: new developments and applications. J. Magn. Magn. Mat., 2002, vol. 242–245, pt 1, pp. 98—104. DOI: 10.1016/S0304-8853(01)01208-2

6. Balcells L., Calvo E., Fontcuberta J. Room-temperature anisotropic magnetoresistive sensor based on manganese perovskite thick films. J. Magn. Magn. Mat., 2002, vol. 242–245, pt 2, pp. 1166—1168. DOI: 10.1016/S0304-8853(01)01292-6

7. Sarma D. D., Mahadevan P., Saha-Dasgupta T., Ray S., Kumar A. Electronic Structure of Sr2FeMoO6. Phys. Rev. Lett., 2000, vol. 85, no. 12, pp. 2549—2552. DOI: 10.1103/PhysRevLett.85.2549

8. Kalanda N. A., Kovalev L. V., Waerenborgh J. C., Soares M. R., Zheludkevich M. L., Yarmolich M. V., Sobolev N. A. Interplay of superstructural ordering and magnetic properties of the Sr2FeMoO6-δ double perovskite. Science Advanced Materials, 2015, vol. 7, no. 3, pp. 446—454. DOI: 10.1166/sam.2015.2134

9. Kalanda N., Turchenko V., Karpinsky D., Demyanov S., Yarmolich M., Balasoiu M., Lupu N., Tyutyunnikov S., Sobolev N. The role of the Fe/Mo cations ordering degree and oxygen non-stoichiometry on the formation of the crystalline and magnetic structure of Sr2FeMoO6-δ. Phys. Status Solidi B, 2019, vol. 256, no. 5, pp. 1800278-1—1800278-7. DOI: 10.1002/pssb.201800278

10. Auth N., Jakob G., Westerburg W., Ritter C., Bonn I., Felser C., Tremel W. Crystal structure and magnetism of the double perovskites A2FeReO6 (A = Ca, Sr, Ba). J. Magn. Magn. Mat., 2004, vol. 272–276, pp. E607—E608. DOI: 10.1016/j.jmmm.2003.12.484

11. Philipp J. B., Majewski P., Alff L., Erb A., Gross R., Graf T., Brandt M. S., Simon J., Walther T., Mader W., Topwal D., Sarma D. D. Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A = Sr, Ba, and Ca). Phys. Rev. B., 2003, vol. 68, no. 14, p. 144431. DOI: 10.1103/PhysRevB.68.144431

12. Zeng Z., Fawcett I.D., Greenblatt M., Croft M. Large magnetoresistance in double perovskite Sr2Cr1.2Mo0.8O6-δ. Materials Research Bulletin, 2001, vol. 36, no. 3–4, pp. 705—715. DOI: 10.1016/S0025-5408(01)00520-7

13. Seung-Iel Park, Hong Joo Ryu, Sung Baek Kim, Bo Wha Lee, Chul Sung Kim. Neutron diffraction and magnetic properties of Sr2Fe0.9Cr0.1MoO6. Phys. B: Condens. Matter, 2004, vol. 345, no. 1–4, pp. 99—102. DOI: 10.1016/j.physb.2003.11.032

14. Wang J., Liu G., Zhong W., Du Y. Magnetic inhomogeneity and valence state in Sr2CrWO6 double perovskite. J. Appl. Phys., 2003, vol. 93, no. 1, pp. 471—474. DOI: 10.1063/1.1524710

15. Ngantso G. D., Benyoussef A., El Kenz A., Naji S. Study of the magnetic properties and phase transitions of Sr2CrMoO6 by mean-field approximation. J. Supercond. Nov. Magn., 2015, vol. 28, no. 8, pp. 2589—2596. DOI: 10.1007/s10948-015-3077-7

16. Patterson F. K., Moeller C. W., Ward R. Magnetic oxides of molybdenum (V) and tungsten (V) with the ordered perovskite structure. Inorg. Chem., 1963, vol. 2, no. 1, pp. 196—198. DOI: 10.1021/ic50005a050

17. Chan T. S., Liu R. S., Hu S. F., Lin J. G. Structure and physical properties of double perovskite compounds Sr2FeMO6(M = Mo, W). Materials Chemistry and Physics, 2005, vol. 93, no. 2–3, pp. 314—319. DOI: 10.1016/j.matchemphys.2005.03.060

18. Moritomo Y., Xu Sh., Machida A., Akimoto T., Nishibori E., Takata M., Sakata M. Electronic structure of double-perovskite transition-metal oxides. Phys. Rev. B, 2000, vol. 61, no. 12, p. R7827. DOI: 10.1103/PhysRevB.61.R7827

19. Arulraj A., Ramesha K., Gopalakrishnan J., Rao C. N. R. Magnetoresistance in the double perovskite Sr2CrMoO6. J. Solid State Chemistry, 2000, vol. 155, no. 1, pp. 233—237. DOI: 10.1006/jssc.2000.8939

20. Philipp J. B., Reisinger D., Schonecke M., Marx A., Erb A., Alff L., Gross R., Klein J. Spin-dependent transport in the double-perovskite Sr2CrWO6. Appl. Phys. Lett., 2001, vol. 79, no. 22, pp. 3654—3656. DOI: 10.1063/1.1421227

21. Li Q. F., Zhu X. F., Chen L. F. First-principles investigations of disorder effects on electronic structure and magnetic properties in Sr2CrMoO6. J. Phys.: Condens. Matter, 2008, vol. 20, no. 25, p. 255230. DOI: 10.1088/0953-8984/20/25/255230

22. Geprägs S., Czeschka F. D., Opel M., Goennenwein S. T. B., Yu W., Mader W., Gross R. Epitaxial growth and magnetic properties of Sr2CrReO6 thin films. J. Magn. Magn. Mat., 2009, vol. 321, no. 13, pp. 2001—2004. DOI: 10.1016/j.jmmm.2008.12.029

23. Yarmolich M., Kalanda N., Demyanov S., Fedotova Ju., Bayev V., Sobolev N. Charge ordering and magnetic properties in nanosized Sr2FeMoO6-δ powders. Phys. Status Solidi B, 2016, vol. 253, no. 11, pp. 2160—2166. DOI: 10.1002/pssb.201600527

24. Ritter C., Blasco J., De Teresa J. M., Serrate D., Morellon L., Garcia J., Ibarra M. R. Structural and magnetic details of 3d-element doped Sr2Fe0.75T0.25MoO6. Solid State Sciences, 2004, vol. 6, no. 5, pp. 419—431. DOI: 10.1016/j.solidstatesciences.2004.02.007

25. Kraus W., Nolze G. POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst., 1996, vol. 29, no. 3, pp. 301—303. DOI: 10.1107/S0021889895014920

26. Rodríguez-Carvajal J. Recent developments of the program FULLPROF. In: Commission on powder diffraction (IUCr). Newsletter, 2001, vol. 26, pp. 12—19. URL: https://www.fkf.mpg.de/4112052/cpd26.pdf


Review

For citations:


Kalanda N.A., Gurskii A.L., Yarmolich M.V., Bobrikov I.A., Ivanshina O.Yu., Sumnikov S.V., Petrov A.V., Maia F., Zhaludkevich A.L., Demyanov S.E. Phase transformation during Sr2CrMoO6–δ synthesis. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(3):149-157. (In Russ.) https://doi.org/10.17073/1609-3577-2019-3-149-157

Views: 1978


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)