Preview

Известия высших учебных заведений. Материалы электронной техники

Расширенный поиск

Управление магнитными свойствами нанокомпозитов NiCo/C

https://doi.org/10.17073/1609-3577-2019-2-92-103

Полный текст:

Аннотация

Разработка новых видов радиопоглощающих материалов актуальна в связи с интенсивным развитием устройств СВЧ-радиоэлектроники, увеличением их мощности и активным внедрением во все сферы жизнедеятельности. Радиопоглощающий материал на основе нанокомпозита NiCo/C может быть использован для уменьшения помех и обеспечения электромагнитной совместимости. Синтезированы металлоуглеродные нанокомпозиты NiCo/C на основе прекурсоров NiCl2/CoCl2/Полиакрилонитрил (ПАН) с использованием ИК-нагрева. Результаты исследований нанокомпозитов NiCo/C методами рентгенофазового анализа, просвечивающей электронной микроскопии и вибрационной магнитометрии показали зависимость структуры и свойств нанокомпозитов NiCo/C от температуры синтеза, концентрации и соотношения металлов в прекурсоре. По результатам рентгенофазового анализа установлено, что в процессе ИК-пиролиза прекурсора происходит формирование металлических наночастиц NiCo, стабилизированных в углеродной матрице. Увеличение температуры синтеза от 350 до 800 °С приводит к росту среднего размера наночастиц NiCo от 10 до 80 нм. Установлено, что формирование сплава происходит за счет постепенного растворения кобальта в никеле с одновременным переходом кобальта из ГПУ-модификации в ГЦК. Методом просвечивающей электронной микроскопии исследована структура образцов нанокомпозитов, синтезированных при 600 °С. Установлено, что с ростом концентрации металла в прекурсоре от 10 до 40 % (мас.) происходит рост среднего размера наночастиц NiCo в составе нанокомпозитов NiCo/C и увеличение концентрации наночастиц в углеродной матрице. Исследование магнитных свойств нанокомпозитов показало, что с увеличением содержания металлов в прекурсоре от 10 до 40 % (мас.) наблюдается практически линейный рост намагниченности насыщения от 5,94 до 25,7 А · м2/кг. Изменение соотношения металлов от Ni : Co = 4 : 1 до Ni : Co = 1 : 4 вызывает рост намагниченности от 11,46 до 23,3 А · м2/кг.

Об авторах

Е. В. Якушко
Национальный исследовательский технологический университет «МИСиС»
Россия

Ленинский просп., д. 4, Москва, 119049

Якушко Егор Владимирович — канд. техн. наук, доцент



Л. В. Кожитов
Национальный исследовательский технологический университет «МИСиС»
Россия

Ленинский просп., д. 4, Москва, 119049

Кожитов Лев Васильевич — доктор техн. наук, профессор



Д. Г. Муратов
Национальный исследовательский технологический университет «МИСиС»; Институт нефтехимического синтеза им. Н. А. Топчиева РАН
Россия

Ленинский просп., д. 4, Москва, 119049;

Ленинский просп., д. 29, Москва, 119991

Муратов Дмитрий Геннадиевич — канд. техн. наук, доцент



Д. Ю. Карпенков
Московский государственный университет имени М. В.Ломоносова
Россия

Ленинские горы, д. 1, Москва, 119991

Карпенков Дмитрий Юрьевич — канд. физ.-мат. наук, научный сотрудник



А. В. Попкова
Тверской государственный университет
Россия

ул. Желябова, д. 33, Тверь, 170100

Попкова Алена Васильевна — канд. техн. наук, старший научный сотрудник

 



Список литературы

1. Gondal M. A., Saleh T. A., Drmosh Q. A. Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization // Appl. Sur. Sci. 2012. V. 258, Iss. 18. P. 6982—6986. DOI: 10.1016/j.apsusc.2012.03.147

2. Lizunova A. A., Efimov A. A., Arsenov P. V., Ivanov V. V. Influence of the sintering temperature on morphology and particle size of silver synthesized by spark discharge // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 307. P. 012081. DOI: 10.1088/1757-899X/307/1/012081

3. Ming J. H., Bin L., Shu H. Magnetic field-induced solvothermal synthesis of one-dimensional assemblies of Ni Co alloy microstructures // Nano Research. 2008. V. 1. P. 303—313. DOI: 10.1007/s12274-008-8031-6

4. Sudhakar P., Daniel B. S. S., Jeevanandam P. Synthesis of nanocrystalline Co–Ni alloys by precursor approach and studies on their magnetic properties // J. Magn. Magn. Mater. 2011. V. 323, Iss. 17. P. 2271—2280. DOI: 10.1016/j.jmmm.2011.04.006

5. Shuaiwei Wen, Tao Yang, Naiqin Zhao, Liying Ma, Enzuo Liu. Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution // Appl. Catalysis B: Environmental. 2019. V. 258. P. 117953. DOI: 10.1016/j.apcatb.2019.117953

6. Yirong Zhu, Zhibin Wu, Mingjun Jing, Xuming Yang, Weixin Song, Xiaobo Ji. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors // J. Power Sources. 2015. V. 273. P. 584—590. DOI: 10.1016/j.jpowsour.2014.09.144

7. Zhang L., Gu F. X., Chan J. M., Wang A. Z., Langer R. S., Farokhzad O. C. Nanoparticles in medicine: Therapeutic applications and developments // Clinical Pharmacology & Therapeutics. 2008. V. 83, Iss. 5. P. 761—769. DOI: 10.1038/sj.clpt.6100400

8. Arsenov P. V., Vlasov I. S., Efimov A. A., Minkov K. N., Ivanov V. V. Aerosol jet printing of platinum microheaters for the application in gas sensors // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 473. P. 012042. DOI: 10.1088/1757-899X/473/1/012042

9. Efimov A. A., Arsenov P. V., Protas N. V., Minkov K. N., Urazov M. N., Ivanov V. V. Dry aerosol jet printing of conductive silver lines on a heated silicon substrate // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 307. P. 012082. DOI: 10.1088/1757-899X/307/1/012082

10. Arsenov P. V., Efimov A. A., Protas N. V., Ivanov V. V. Influence of the operating parameters of the needle-plate electrostatic precipitator on the size distribution of aerosol particles // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 324. P. 012016. DOI: 10.1088/1757-899X/324/1/012016

11. Danfeng Zhang, Fangxing Xu, Jin Lin, Zhenda Yang, Min Zhang. Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18-GHz frequency range // Carbon. 2014. V. 80. P. 103—111. DOI: 10.1016/j.carbon.2014.08.044

12. Juan Xiong, Zhen Xiang, Jing Zhao, Lunzhou Yu, Erbiao Cui, Bowen Deng, Zhicheng Liu, Rui Liu, Wei Lu. Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance // Carbon. 2019. V. 154. P. 391—401. DOI: 10.1016/j.carbon.2019.07.096

13. Cuiping Li, Jing Sui, Ziqiu Zhang, Xiaohui Jiang, Zhiming Zhang, Liangmin Yu. Microwave-assisted synthesis of tremella-like NiCo/C composites for efficient broadband electromagnetic wave absorption at 2–40-GHz // Chem. Eng. J. 2019. V. 375. P. 122017. DOI: 10.1016/j.cej.2019.122017

14. Saichun Hu, Yuming Zhou, Man He, Qiang Liao, Haiyong Yang, Haifang Li, Ran Xu, Qinghua Ding. Hollow Ni-Co layered double hydroxides-derived NiCo-alloy@g-C3N4 microtubule with high-performance microwave absorption // Mater. Lett. 2018. V. 231. P. 171—174. DOI: 10.1016/j.matlet.2018.08.048

15. Weichun Ye, Jiajia Fu, Qin Wang, Chunming Wang, Desheng Xue. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets // J. Magn. Magn. Mater. 2015. V. 395. P. 147—151. DOI: 10.1016/j.jmmm.2015.07.087

16. Kozhitov L. V., Kuzmenko A. P., Kozhitov S. L., Muratov D. G., Harseev V. A., Rodionov V. V., Popkova A. V., Matveev K. E., Yakushko E. V. Influence of the ratio of metal composed nanocomposites Fe-Co/C on phase composition // J. Nano- Electron. Phys. 2013. V. 5, N 4. P. 04008.

17. Kozhitov L. V., Muratov D. G., Yakushko E. V., Kozhitov S. L., Savchenko A. G., Shchetinin I. V., Emelyanov S. G., Chervjakov L. M. The synthesis of metalcarbon nanocomposite Ni/C on the basis of polyacrylonitrile // J. Nano- Electron. Phys. 2013. V. 5, N 4. P. 04007.

18. Kozhitov L. V., Bulatov M. F., Korovushkin V. V., Kostishin V. G., Muratov D. G., Shipko M. N., Emelyanov S. G., Yakushko E. V. The formation and study of the FeCo nanoparticles alloy in structure of metal-carbon nanocomposites FeCo/C // J. Nano- Electron. Phys. 2015. V. 7, N 4. P. 04103.

19. Kozhitov L., Kuzmenko A., Muratov D., Rodionov V., Popkova A., Yakushko E., Dobromyslov M. Influence of structural features and physico-chemical properties of metal-carbon nanocomposites with ferromagnetic metal inclusions on microwave radiation // J. Nano- Electron. Phys. 2014. V. 6, N 3. P. 03024.

20. Muratov D. G., Kozhitov L. V., Emelyanov S. G., Yakushko E. V., Bulatov M. F. The influence of synthesis temperature on the structure, composition and magnetic properties of nanocomposites NiCo/C // J. Nano- Electron. Phys. 2015. V. 7, N 4. P. 04071

21. Yakushko E. V., Kozhitov L. V., Muratov D. G., Kostishin V. G. NiCo/C nanocomposites: Synthesis and magnetic properties // Russ. J. Inorg. Chem. 2016. V. 61, N 12. P. 1591—1595. DOI: 10.1134/S0036023616120202

22. Ghimbeu C. M., Le Meins J.-M., Zlotea C., Vidal L., Schrodj G., Latroche M., Vix-Guterl C. Controlled synthesis of NiCo nanoalloys embedded in ordered porous carbon by a novel soft-template strategy // Carbon. 2014. V. 67. P. 260—272. DOI: 10.1016/j.carbon.2013.09.089

23. Тарасевич Ю. Ю. Перколяция: теория, приложения, алгоритмы. М.: Либроком, 2011. 116 с.


Для цитирования:


Якушко Е.В., Кожитов Л.В., Муратов Д.Г., Карпенков Д.Ю., Попкова А.В. Управление магнитными свойствами нанокомпозитов NiCo/C. Известия высших учебных заведений. Материалы электронной техники. 2019;22(2):92-103. https://doi.org/10.17073/1609-3577-2019-2-92-103

For citation:


Yakushko E.V., Kozhitov L.V., Muratov D.G., Karpenkov D.Yu., Popkova A.V. The controllable magnetic properties of NiCo/C nanocomposites. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(2):92-103. (In Russ.) https://doi.org/10.17073/1609-3577-2019-2-92-103

Просмотров: 123


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)